You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
993 lines
37 KiB
993 lines
37 KiB
3 years ago
|
"""functools.py - Tools for working with functions and callable objects
|
||
|
"""
|
||
|
# Python module wrapper for _functools C module
|
||
|
# to allow utilities written in Python to be added
|
||
|
# to the functools module.
|
||
|
# Written by Nick Coghlan <ncoghlan at gmail.com>,
|
||
|
# Raymond Hettinger <python at rcn.com>,
|
||
|
# and Łukasz Langa <lukasz at langa.pl>.
|
||
|
# Copyright (C) 2006-2013 Python Software Foundation.
|
||
|
# See C source code for _functools credits/copyright
|
||
|
|
||
|
__all__ = ['update_wrapper', 'wraps', 'WRAPPER_ASSIGNMENTS', 'WRAPPER_UPDATES',
|
||
|
'total_ordering', 'cache', 'cmp_to_key', 'lru_cache', 'reduce',
|
||
|
'partial', 'partialmethod', 'singledispatch', 'singledispatchmethod',
|
||
|
'cached_property']
|
||
|
|
||
|
from abc import get_cache_token
|
||
|
from collections import namedtuple
|
||
|
# import types, weakref # Deferred to single_dispatch()
|
||
|
from reprlib import recursive_repr
|
||
|
from _thread import RLock
|
||
|
from types import GenericAlias
|
||
|
|
||
|
|
||
|
################################################################################
|
||
|
### update_wrapper() and wraps() decorator
|
||
|
################################################################################
|
||
|
|
||
|
# update_wrapper() and wraps() are tools to help write
|
||
|
# wrapper functions that can handle naive introspection
|
||
|
|
||
|
WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',
|
||
|
'__annotations__')
|
||
|
WRAPPER_UPDATES = ('__dict__',)
|
||
|
def update_wrapper(wrapper,
|
||
|
wrapped,
|
||
|
assigned = WRAPPER_ASSIGNMENTS,
|
||
|
updated = WRAPPER_UPDATES):
|
||
|
"""Update a wrapper function to look like the wrapped function
|
||
|
|
||
|
wrapper is the function to be updated
|
||
|
wrapped is the original function
|
||
|
assigned is a tuple naming the attributes assigned directly
|
||
|
from the wrapped function to the wrapper function (defaults to
|
||
|
functools.WRAPPER_ASSIGNMENTS)
|
||
|
updated is a tuple naming the attributes of the wrapper that
|
||
|
are updated with the corresponding attribute from the wrapped
|
||
|
function (defaults to functools.WRAPPER_UPDATES)
|
||
|
"""
|
||
|
for attr in assigned:
|
||
|
try:
|
||
|
value = getattr(wrapped, attr)
|
||
|
except AttributeError:
|
||
|
pass
|
||
|
else:
|
||
|
setattr(wrapper, attr, value)
|
||
|
for attr in updated:
|
||
|
getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
|
||
|
# Issue #17482: set __wrapped__ last so we don't inadvertently copy it
|
||
|
# from the wrapped function when updating __dict__
|
||
|
wrapper.__wrapped__ = wrapped
|
||
|
# Return the wrapper so this can be used as a decorator via partial()
|
||
|
return wrapper
|
||
|
|
||
|
def wraps(wrapped,
|
||
|
assigned = WRAPPER_ASSIGNMENTS,
|
||
|
updated = WRAPPER_UPDATES):
|
||
|
"""Decorator factory to apply update_wrapper() to a wrapper function
|
||
|
|
||
|
Returns a decorator that invokes update_wrapper() with the decorated
|
||
|
function as the wrapper argument and the arguments to wraps() as the
|
||
|
remaining arguments. Default arguments are as for update_wrapper().
|
||
|
This is a convenience function to simplify applying partial() to
|
||
|
update_wrapper().
|
||
|
"""
|
||
|
return partial(update_wrapper, wrapped=wrapped,
|
||
|
assigned=assigned, updated=updated)
|
||
|
|
||
|
|
||
|
################################################################################
|
||
|
### total_ordering class decorator
|
||
|
################################################################################
|
||
|
|
||
|
# The total ordering functions all invoke the root magic method directly
|
||
|
# rather than using the corresponding operator. This avoids possible
|
||
|
# infinite recursion that could occur when the operator dispatch logic
|
||
|
# detects a NotImplemented result and then calls a reflected method.
|
||
|
|
||
|
def _gt_from_lt(self, other, NotImplemented=NotImplemented):
|
||
|
'Return a > b. Computed by @total_ordering from (not a < b) and (a != b).'
|
||
|
op_result = type(self).__lt__(self, other)
|
||
|
if op_result is NotImplemented:
|
||
|
return op_result
|
||
|
return not op_result and self != other
|
||
|
|
||
|
def _le_from_lt(self, other, NotImplemented=NotImplemented):
|
||
|
'Return a <= b. Computed by @total_ordering from (a < b) or (a == b).'
|
||
|
op_result = type(self).__lt__(self, other)
|
||
|
if op_result is NotImplemented:
|
||
|
return op_result
|
||
|
return op_result or self == other
|
||
|
|
||
|
def _ge_from_lt(self, other, NotImplemented=NotImplemented):
|
||
|
'Return a >= b. Computed by @total_ordering from (not a < b).'
|
||
|
op_result = type(self).__lt__(self, other)
|
||
|
if op_result is NotImplemented:
|
||
|
return op_result
|
||
|
return not op_result
|
||
|
|
||
|
def _ge_from_le(self, other, NotImplemented=NotImplemented):
|
||
|
'Return a >= b. Computed by @total_ordering from (not a <= b) or (a == b).'
|
||
|
op_result = type(self).__le__(self, other)
|
||
|
if op_result is NotImplemented:
|
||
|
return op_result
|
||
|
return not op_result or self == other
|
||
|
|
||
|
def _lt_from_le(self, other, NotImplemented=NotImplemented):
|
||
|
'Return a < b. Computed by @total_ordering from (a <= b) and (a != b).'
|
||
|
op_result = type(self).__le__(self, other)
|
||
|
if op_result is NotImplemented:
|
||
|
return op_result
|
||
|
return op_result and self != other
|
||
|
|
||
|
def _gt_from_le(self, other, NotImplemented=NotImplemented):
|
||
|
'Return a > b. Computed by @total_ordering from (not a <= b).'
|
||
|
op_result = type(self).__le__(self, other)
|
||
|
if op_result is NotImplemented:
|
||
|
return op_result
|
||
|
return not op_result
|
||
|
|
||
|
def _lt_from_gt(self, other, NotImplemented=NotImplemented):
|
||
|
'Return a < b. Computed by @total_ordering from (not a > b) and (a != b).'
|
||
|
op_result = type(self).__gt__(self, other)
|
||
|
if op_result is NotImplemented:
|
||
|
return op_result
|
||
|
return not op_result and self != other
|
||
|
|
||
|
def _ge_from_gt(self, other, NotImplemented=NotImplemented):
|
||
|
'Return a >= b. Computed by @total_ordering from (a > b) or (a == b).'
|
||
|
op_result = type(self).__gt__(self, other)
|
||
|
if op_result is NotImplemented:
|
||
|
return op_result
|
||
|
return op_result or self == other
|
||
|
|
||
|
def _le_from_gt(self, other, NotImplemented=NotImplemented):
|
||
|
'Return a <= b. Computed by @total_ordering from (not a > b).'
|
||
|
op_result = type(self).__gt__(self, other)
|
||
|
if op_result is NotImplemented:
|
||
|
return op_result
|
||
|
return not op_result
|
||
|
|
||
|
def _le_from_ge(self, other, NotImplemented=NotImplemented):
|
||
|
'Return a <= b. Computed by @total_ordering from (not a >= b) or (a == b).'
|
||
|
op_result = type(self).__ge__(self, other)
|
||
|
if op_result is NotImplemented:
|
||
|
return op_result
|
||
|
return not op_result or self == other
|
||
|
|
||
|
def _gt_from_ge(self, other, NotImplemented=NotImplemented):
|
||
|
'Return a > b. Computed by @total_ordering from (a >= b) and (a != b).'
|
||
|
op_result = type(self).__ge__(self, other)
|
||
|
if op_result is NotImplemented:
|
||
|
return op_result
|
||
|
return op_result and self != other
|
||
|
|
||
|
def _lt_from_ge(self, other, NotImplemented=NotImplemented):
|
||
|
'Return a < b. Computed by @total_ordering from (not a >= b).'
|
||
|
op_result = type(self).__ge__(self, other)
|
||
|
if op_result is NotImplemented:
|
||
|
return op_result
|
||
|
return not op_result
|
||
|
|
||
|
_convert = {
|
||
|
'__lt__': [('__gt__', _gt_from_lt),
|
||
|
('__le__', _le_from_lt),
|
||
|
('__ge__', _ge_from_lt)],
|
||
|
'__le__': [('__ge__', _ge_from_le),
|
||
|
('__lt__', _lt_from_le),
|
||
|
('__gt__', _gt_from_le)],
|
||
|
'__gt__': [('__lt__', _lt_from_gt),
|
||
|
('__ge__', _ge_from_gt),
|
||
|
('__le__', _le_from_gt)],
|
||
|
'__ge__': [('__le__', _le_from_ge),
|
||
|
('__gt__', _gt_from_ge),
|
||
|
('__lt__', _lt_from_ge)]
|
||
|
}
|
||
|
|
||
|
def total_ordering(cls):
|
||
|
"""Class decorator that fills in missing ordering methods"""
|
||
|
# Find user-defined comparisons (not those inherited from object).
|
||
|
roots = {op for op in _convert if getattr(cls, op, None) is not getattr(object, op, None)}
|
||
|
if not roots:
|
||
|
raise ValueError('must define at least one ordering operation: < > <= >=')
|
||
|
root = max(roots) # prefer __lt__ to __le__ to __gt__ to __ge__
|
||
|
for opname, opfunc in _convert[root]:
|
||
|
if opname not in roots:
|
||
|
opfunc.__name__ = opname
|
||
|
setattr(cls, opname, opfunc)
|
||
|
return cls
|
||
|
|
||
|
|
||
|
################################################################################
|
||
|
### cmp_to_key() function converter
|
||
|
################################################################################
|
||
|
|
||
|
def cmp_to_key(mycmp):
|
||
|
"""Convert a cmp= function into a key= function"""
|
||
|
class K(object):
|
||
|
__slots__ = ['obj']
|
||
|
def __init__(self, obj):
|
||
|
self.obj = obj
|
||
|
def __lt__(self, other):
|
||
|
return mycmp(self.obj, other.obj) < 0
|
||
|
def __gt__(self, other):
|
||
|
return mycmp(self.obj, other.obj) > 0
|
||
|
def __eq__(self, other):
|
||
|
return mycmp(self.obj, other.obj) == 0
|
||
|
def __le__(self, other):
|
||
|
return mycmp(self.obj, other.obj) <= 0
|
||
|
def __ge__(self, other):
|
||
|
return mycmp(self.obj, other.obj) >= 0
|
||
|
__hash__ = None
|
||
|
return K
|
||
|
|
||
|
try:
|
||
|
from _functools import cmp_to_key
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
|
||
|
################################################################################
|
||
|
### reduce() sequence to a single item
|
||
|
################################################################################
|
||
|
|
||
|
_initial_missing = object()
|
||
|
|
||
|
def reduce(function, sequence, initial=_initial_missing):
|
||
|
"""
|
||
|
reduce(function, iterable[, initial]) -> value
|
||
|
|
||
|
Apply a function of two arguments cumulatively to the items of a sequence
|
||
|
or iterable, from left to right, so as to reduce the iterable to a single
|
||
|
value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
|
||
|
((((1+2)+3)+4)+5). If initial is present, it is placed before the items
|
||
|
of the iterable in the calculation, and serves as a default when the
|
||
|
iterable is empty.
|
||
|
"""
|
||
|
|
||
|
it = iter(sequence)
|
||
|
|
||
|
if initial is _initial_missing:
|
||
|
try:
|
||
|
value = next(it)
|
||
|
except StopIteration:
|
||
|
raise TypeError(
|
||
|
"reduce() of empty iterable with no initial value") from None
|
||
|
else:
|
||
|
value = initial
|
||
|
|
||
|
for element in it:
|
||
|
value = function(value, element)
|
||
|
|
||
|
return value
|
||
|
|
||
|
try:
|
||
|
from _functools import reduce
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
|
||
|
################################################################################
|
||
|
### partial() argument application
|
||
|
################################################################################
|
||
|
|
||
|
# Purely functional, no descriptor behaviour
|
||
|
class partial:
|
||
|
"""New function with partial application of the given arguments
|
||
|
and keywords.
|
||
|
"""
|
||
|
|
||
|
__slots__ = "func", "args", "keywords", "__dict__", "__weakref__"
|
||
|
|
||
|
def __new__(cls, func, /, *args, **keywords):
|
||
|
if not callable(func):
|
||
|
raise TypeError("the first argument must be callable")
|
||
|
|
||
|
if hasattr(func, "func"):
|
||
|
args = func.args + args
|
||
|
keywords = {**func.keywords, **keywords}
|
||
|
func = func.func
|
||
|
|
||
|
self = super(partial, cls).__new__(cls)
|
||
|
|
||
|
self.func = func
|
||
|
self.args = args
|
||
|
self.keywords = keywords
|
||
|
return self
|
||
|
|
||
|
def __call__(self, /, *args, **keywords):
|
||
|
keywords = {**self.keywords, **keywords}
|
||
|
return self.func(*self.args, *args, **keywords)
|
||
|
|
||
|
@recursive_repr()
|
||
|
def __repr__(self):
|
||
|
qualname = type(self).__qualname__
|
||
|
args = [repr(self.func)]
|
||
|
args.extend(repr(x) for x in self.args)
|
||
|
args.extend(f"{k}={v!r}" for (k, v) in self.keywords.items())
|
||
|
if type(self).__module__ == "functools":
|
||
|
return f"functools.{qualname}({', '.join(args)})"
|
||
|
return f"{qualname}({', '.join(args)})"
|
||
|
|
||
|
def __reduce__(self):
|
||
|
return type(self), (self.func,), (self.func, self.args,
|
||
|
self.keywords or None, self.__dict__ or None)
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
if not isinstance(state, tuple):
|
||
|
raise TypeError("argument to __setstate__ must be a tuple")
|
||
|
if len(state) != 4:
|
||
|
raise TypeError(f"expected 4 items in state, got {len(state)}")
|
||
|
func, args, kwds, namespace = state
|
||
|
if (not callable(func) or not isinstance(args, tuple) or
|
||
|
(kwds is not None and not isinstance(kwds, dict)) or
|
||
|
(namespace is not None and not isinstance(namespace, dict))):
|
||
|
raise TypeError("invalid partial state")
|
||
|
|
||
|
args = tuple(args) # just in case it's a subclass
|
||
|
if kwds is None:
|
||
|
kwds = {}
|
||
|
elif type(kwds) is not dict: # XXX does it need to be *exactly* dict?
|
||
|
kwds = dict(kwds)
|
||
|
if namespace is None:
|
||
|
namespace = {}
|
||
|
|
||
|
self.__dict__ = namespace
|
||
|
self.func = func
|
||
|
self.args = args
|
||
|
self.keywords = kwds
|
||
|
|
||
|
try:
|
||
|
from _functools import partial
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
# Descriptor version
|
||
|
class partialmethod(object):
|
||
|
"""Method descriptor with partial application of the given arguments
|
||
|
and keywords.
|
||
|
|
||
|
Supports wrapping existing descriptors and handles non-descriptor
|
||
|
callables as instance methods.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, func, /, *args, **keywords):
|
||
|
if not callable(func) and not hasattr(func, "__get__"):
|
||
|
raise TypeError("{!r} is not callable or a descriptor"
|
||
|
.format(func))
|
||
|
|
||
|
# func could be a descriptor like classmethod which isn't callable,
|
||
|
# so we can't inherit from partial (it verifies func is callable)
|
||
|
if isinstance(func, partialmethod):
|
||
|
# flattening is mandatory in order to place cls/self before all
|
||
|
# other arguments
|
||
|
# it's also more efficient since only one function will be called
|
||
|
self.func = func.func
|
||
|
self.args = func.args + args
|
||
|
self.keywords = {**func.keywords, **keywords}
|
||
|
else:
|
||
|
self.func = func
|
||
|
self.args = args
|
||
|
self.keywords = keywords
|
||
|
|
||
|
def __repr__(self):
|
||
|
args = ", ".join(map(repr, self.args))
|
||
|
keywords = ", ".join("{}={!r}".format(k, v)
|
||
|
for k, v in self.keywords.items())
|
||
|
format_string = "{module}.{cls}({func}, {args}, {keywords})"
|
||
|
return format_string.format(module=self.__class__.__module__,
|
||
|
cls=self.__class__.__qualname__,
|
||
|
func=self.func,
|
||
|
args=args,
|
||
|
keywords=keywords)
|
||
|
|
||
|
def _make_unbound_method(self):
|
||
|
def _method(cls_or_self, /, *args, **keywords):
|
||
|
keywords = {**self.keywords, **keywords}
|
||
|
return self.func(cls_or_self, *self.args, *args, **keywords)
|
||
|
_method.__isabstractmethod__ = self.__isabstractmethod__
|
||
|
_method._partialmethod = self
|
||
|
return _method
|
||
|
|
||
|
def __get__(self, obj, cls=None):
|
||
|
get = getattr(self.func, "__get__", None)
|
||
|
result = None
|
||
|
if get is not None:
|
||
|
new_func = get(obj, cls)
|
||
|
if new_func is not self.func:
|
||
|
# Assume __get__ returning something new indicates the
|
||
|
# creation of an appropriate callable
|
||
|
result = partial(new_func, *self.args, **self.keywords)
|
||
|
try:
|
||
|
result.__self__ = new_func.__self__
|
||
|
except AttributeError:
|
||
|
pass
|
||
|
if result is None:
|
||
|
# If the underlying descriptor didn't do anything, treat this
|
||
|
# like an instance method
|
||
|
result = self._make_unbound_method().__get__(obj, cls)
|
||
|
return result
|
||
|
|
||
|
@property
|
||
|
def __isabstractmethod__(self):
|
||
|
return getattr(self.func, "__isabstractmethod__", False)
|
||
|
|
||
|
__class_getitem__ = classmethod(GenericAlias)
|
||
|
|
||
|
|
||
|
# Helper functions
|
||
|
|
||
|
def _unwrap_partial(func):
|
||
|
while isinstance(func, partial):
|
||
|
func = func.func
|
||
|
return func
|
||
|
|
||
|
################################################################################
|
||
|
### LRU Cache function decorator
|
||
|
################################################################################
|
||
|
|
||
|
_CacheInfo = namedtuple("CacheInfo", ["hits", "misses", "maxsize", "currsize"])
|
||
|
|
||
|
class _HashedSeq(list):
|
||
|
""" This class guarantees that hash() will be called no more than once
|
||
|
per element. This is important because the lru_cache() will hash
|
||
|
the key multiple times on a cache miss.
|
||
|
|
||
|
"""
|
||
|
|
||
|
__slots__ = 'hashvalue'
|
||
|
|
||
|
def __init__(self, tup, hash=hash):
|
||
|
self[:] = tup
|
||
|
self.hashvalue = hash(tup)
|
||
|
|
||
|
def __hash__(self):
|
||
|
return self.hashvalue
|
||
|
|
||
|
def _make_key(args, kwds, typed,
|
||
|
kwd_mark = (object(),),
|
||
|
fasttypes = {int, str},
|
||
|
tuple=tuple, type=type, len=len):
|
||
|
"""Make a cache key from optionally typed positional and keyword arguments
|
||
|
|
||
|
The key is constructed in a way that is flat as possible rather than
|
||
|
as a nested structure that would take more memory.
|
||
|
|
||
|
If there is only a single argument and its data type is known to cache
|
||
|
its hash value, then that argument is returned without a wrapper. This
|
||
|
saves space and improves lookup speed.
|
||
|
|
||
|
"""
|
||
|
# All of code below relies on kwds preserving the order input by the user.
|
||
|
# Formerly, we sorted() the kwds before looping. The new way is *much*
|
||
|
# faster; however, it means that f(x=1, y=2) will now be treated as a
|
||
|
# distinct call from f(y=2, x=1) which will be cached separately.
|
||
|
key = args
|
||
|
if kwds:
|
||
|
key += kwd_mark
|
||
|
for item in kwds.items():
|
||
|
key += item
|
||
|
if typed:
|
||
|
key += tuple(type(v) for v in args)
|
||
|
if kwds:
|
||
|
key += tuple(type(v) for v in kwds.values())
|
||
|
elif len(key) == 1 and type(key[0]) in fasttypes:
|
||
|
return key[0]
|
||
|
return _HashedSeq(key)
|
||
|
|
||
|
def lru_cache(maxsize=128, typed=False):
|
||
|
"""Least-recently-used cache decorator.
|
||
|
|
||
|
If *maxsize* is set to None, the LRU features are disabled and the cache
|
||
|
can grow without bound.
|
||
|
|
||
|
If *typed* is True, arguments of different types will be cached separately.
|
||
|
For example, f(3.0) and f(3) will be treated as distinct calls with
|
||
|
distinct results.
|
||
|
|
||
|
Arguments to the cached function must be hashable.
|
||
|
|
||
|
View the cache statistics named tuple (hits, misses, maxsize, currsize)
|
||
|
with f.cache_info(). Clear the cache and statistics with f.cache_clear().
|
||
|
Access the underlying function with f.__wrapped__.
|
||
|
|
||
|
See: https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_(LRU)
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Users should only access the lru_cache through its public API:
|
||
|
# cache_info, cache_clear, and f.__wrapped__
|
||
|
# The internals of the lru_cache are encapsulated for thread safety and
|
||
|
# to allow the implementation to change (including a possible C version).
|
||
|
|
||
|
if isinstance(maxsize, int):
|
||
|
# Negative maxsize is treated as 0
|
||
|
if maxsize < 0:
|
||
|
maxsize = 0
|
||
|
elif callable(maxsize) and isinstance(typed, bool):
|
||
|
# The user_function was passed in directly via the maxsize argument
|
||
|
user_function, maxsize = maxsize, 128
|
||
|
wrapper = _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo)
|
||
|
wrapper.cache_parameters = lambda : {'maxsize': maxsize, 'typed': typed}
|
||
|
return update_wrapper(wrapper, user_function)
|
||
|
elif maxsize is not None:
|
||
|
raise TypeError(
|
||
|
'Expected first argument to be an integer, a callable, or None')
|
||
|
|
||
|
def decorating_function(user_function):
|
||
|
wrapper = _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo)
|
||
|
wrapper.cache_parameters = lambda : {'maxsize': maxsize, 'typed': typed}
|
||
|
return update_wrapper(wrapper, user_function)
|
||
|
|
||
|
return decorating_function
|
||
|
|
||
|
def _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo):
|
||
|
# Constants shared by all lru cache instances:
|
||
|
sentinel = object() # unique object used to signal cache misses
|
||
|
make_key = _make_key # build a key from the function arguments
|
||
|
PREV, NEXT, KEY, RESULT = 0, 1, 2, 3 # names for the link fields
|
||
|
|
||
|
cache = {}
|
||
|
hits = misses = 0
|
||
|
full = False
|
||
|
cache_get = cache.get # bound method to lookup a key or return None
|
||
|
cache_len = cache.__len__ # get cache size without calling len()
|
||
|
lock = RLock() # because linkedlist updates aren't threadsafe
|
||
|
root = [] # root of the circular doubly linked list
|
||
|
root[:] = [root, root, None, None] # initialize by pointing to self
|
||
|
|
||
|
if maxsize == 0:
|
||
|
|
||
|
def wrapper(*args, **kwds):
|
||
|
# No caching -- just a statistics update
|
||
|
nonlocal misses
|
||
|
misses += 1
|
||
|
result = user_function(*args, **kwds)
|
||
|
return result
|
||
|
|
||
|
elif maxsize is None:
|
||
|
|
||
|
def wrapper(*args, **kwds):
|
||
|
# Simple caching without ordering or size limit
|
||
|
nonlocal hits, misses
|
||
|
key = make_key(args, kwds, typed)
|
||
|
result = cache_get(key, sentinel)
|
||
|
if result is not sentinel:
|
||
|
hits += 1
|
||
|
return result
|
||
|
misses += 1
|
||
|
result = user_function(*args, **kwds)
|
||
|
cache[key] = result
|
||
|
return result
|
||
|
|
||
|
else:
|
||
|
|
||
|
def wrapper(*args, **kwds):
|
||
|
# Size limited caching that tracks accesses by recency
|
||
|
nonlocal root, hits, misses, full
|
||
|
key = make_key(args, kwds, typed)
|
||
|
with lock:
|
||
|
link = cache_get(key)
|
||
|
if link is not None:
|
||
|
# Move the link to the front of the circular queue
|
||
|
link_prev, link_next, _key, result = link
|
||
|
link_prev[NEXT] = link_next
|
||
|
link_next[PREV] = link_prev
|
||
|
last = root[PREV]
|
||
|
last[NEXT] = root[PREV] = link
|
||
|
link[PREV] = last
|
||
|
link[NEXT] = root
|
||
|
hits += 1
|
||
|
return result
|
||
|
misses += 1
|
||
|
result = user_function(*args, **kwds)
|
||
|
with lock:
|
||
|
if key in cache:
|
||
|
# Getting here means that this same key was added to the
|
||
|
# cache while the lock was released. Since the link
|
||
|
# update is already done, we need only return the
|
||
|
# computed result and update the count of misses.
|
||
|
pass
|
||
|
elif full:
|
||
|
# Use the old root to store the new key and result.
|
||
|
oldroot = root
|
||
|
oldroot[KEY] = key
|
||
|
oldroot[RESULT] = result
|
||
|
# Empty the oldest link and make it the new root.
|
||
|
# Keep a reference to the old key and old result to
|
||
|
# prevent their ref counts from going to zero during the
|
||
|
# update. That will prevent potentially arbitrary object
|
||
|
# clean-up code (i.e. __del__) from running while we're
|
||
|
# still adjusting the links.
|
||
|
root = oldroot[NEXT]
|
||
|
oldkey = root[KEY]
|
||
|
oldresult = root[RESULT]
|
||
|
root[KEY] = root[RESULT] = None
|
||
|
# Now update the cache dictionary.
|
||
|
del cache[oldkey]
|
||
|
# Save the potentially reentrant cache[key] assignment
|
||
|
# for last, after the root and links have been put in
|
||
|
# a consistent state.
|
||
|
cache[key] = oldroot
|
||
|
else:
|
||
|
# Put result in a new link at the front of the queue.
|
||
|
last = root[PREV]
|
||
|
link = [last, root, key, result]
|
||
|
last[NEXT] = root[PREV] = cache[key] = link
|
||
|
# Use the cache_len bound method instead of the len() function
|
||
|
# which could potentially be wrapped in an lru_cache itself.
|
||
|
full = (cache_len() >= maxsize)
|
||
|
return result
|
||
|
|
||
|
def cache_info():
|
||
|
"""Report cache statistics"""
|
||
|
with lock:
|
||
|
return _CacheInfo(hits, misses, maxsize, cache_len())
|
||
|
|
||
|
def cache_clear():
|
||
|
"""Clear the cache and cache statistics"""
|
||
|
nonlocal hits, misses, full
|
||
|
with lock:
|
||
|
cache.clear()
|
||
|
root[:] = [root, root, None, None]
|
||
|
hits = misses = 0
|
||
|
full = False
|
||
|
|
||
|
wrapper.cache_info = cache_info
|
||
|
wrapper.cache_clear = cache_clear
|
||
|
return wrapper
|
||
|
|
||
|
try:
|
||
|
from _functools import _lru_cache_wrapper
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
|
||
|
################################################################################
|
||
|
### cache -- simplified access to the infinity cache
|
||
|
################################################################################
|
||
|
|
||
|
def cache(user_function, /):
|
||
|
'Simple lightweight unbounded cache. Sometimes called "memoize".'
|
||
|
return lru_cache(maxsize=None)(user_function)
|
||
|
|
||
|
|
||
|
################################################################################
|
||
|
### singledispatch() - single-dispatch generic function decorator
|
||
|
################################################################################
|
||
|
|
||
|
def _c3_merge(sequences):
|
||
|
"""Merges MROs in *sequences* to a single MRO using the C3 algorithm.
|
||
|
|
||
|
Adapted from https://www.python.org/download/releases/2.3/mro/.
|
||
|
|
||
|
"""
|
||
|
result = []
|
||
|
while True:
|
||
|
sequences = [s for s in sequences if s] # purge empty sequences
|
||
|
if not sequences:
|
||
|
return result
|
||
|
for s1 in sequences: # find merge candidates among seq heads
|
||
|
candidate = s1[0]
|
||
|
for s2 in sequences:
|
||
|
if candidate in s2[1:]:
|
||
|
candidate = None
|
||
|
break # reject the current head, it appears later
|
||
|
else:
|
||
|
break
|
||
|
if candidate is None:
|
||
|
raise RuntimeError("Inconsistent hierarchy")
|
||
|
result.append(candidate)
|
||
|
# remove the chosen candidate
|
||
|
for seq in sequences:
|
||
|
if seq[0] == candidate:
|
||
|
del seq[0]
|
||
|
|
||
|
def _c3_mro(cls, abcs=None):
|
||
|
"""Computes the method resolution order using extended C3 linearization.
|
||
|
|
||
|
If no *abcs* are given, the algorithm works exactly like the built-in C3
|
||
|
linearization used for method resolution.
|
||
|
|
||
|
If given, *abcs* is a list of abstract base classes that should be inserted
|
||
|
into the resulting MRO. Unrelated ABCs are ignored and don't end up in the
|
||
|
result. The algorithm inserts ABCs where their functionality is introduced,
|
||
|
i.e. issubclass(cls, abc) returns True for the class itself but returns
|
||
|
False for all its direct base classes. Implicit ABCs for a given class
|
||
|
(either registered or inferred from the presence of a special method like
|
||
|
__len__) are inserted directly after the last ABC explicitly listed in the
|
||
|
MRO of said class. If two implicit ABCs end up next to each other in the
|
||
|
resulting MRO, their ordering depends on the order of types in *abcs*.
|
||
|
|
||
|
"""
|
||
|
for i, base in enumerate(reversed(cls.__bases__)):
|
||
|
if hasattr(base, '__abstractmethods__'):
|
||
|
boundary = len(cls.__bases__) - i
|
||
|
break # Bases up to the last explicit ABC are considered first.
|
||
|
else:
|
||
|
boundary = 0
|
||
|
abcs = list(abcs) if abcs else []
|
||
|
explicit_bases = list(cls.__bases__[:boundary])
|
||
|
abstract_bases = []
|
||
|
other_bases = list(cls.__bases__[boundary:])
|
||
|
for base in abcs:
|
||
|
if issubclass(cls, base) and not any(
|
||
|
issubclass(b, base) for b in cls.__bases__
|
||
|
):
|
||
|
# If *cls* is the class that introduces behaviour described by
|
||
|
# an ABC *base*, insert said ABC to its MRO.
|
||
|
abstract_bases.append(base)
|
||
|
for base in abstract_bases:
|
||
|
abcs.remove(base)
|
||
|
explicit_c3_mros = [_c3_mro(base, abcs=abcs) for base in explicit_bases]
|
||
|
abstract_c3_mros = [_c3_mro(base, abcs=abcs) for base in abstract_bases]
|
||
|
other_c3_mros = [_c3_mro(base, abcs=abcs) for base in other_bases]
|
||
|
return _c3_merge(
|
||
|
[[cls]] +
|
||
|
explicit_c3_mros + abstract_c3_mros + other_c3_mros +
|
||
|
[explicit_bases] + [abstract_bases] + [other_bases]
|
||
|
)
|
||
|
|
||
|
def _compose_mro(cls, types):
|
||
|
"""Calculates the method resolution order for a given class *cls*.
|
||
|
|
||
|
Includes relevant abstract base classes (with their respective bases) from
|
||
|
the *types* iterable. Uses a modified C3 linearization algorithm.
|
||
|
|
||
|
"""
|
||
|
bases = set(cls.__mro__)
|
||
|
# Remove entries which are already present in the __mro__ or unrelated.
|
||
|
def is_related(typ):
|
||
|
return (typ not in bases and hasattr(typ, '__mro__')
|
||
|
and not isinstance(typ, GenericAlias)
|
||
|
and issubclass(cls, typ))
|
||
|
types = [n for n in types if is_related(n)]
|
||
|
# Remove entries which are strict bases of other entries (they will end up
|
||
|
# in the MRO anyway.
|
||
|
def is_strict_base(typ):
|
||
|
for other in types:
|
||
|
if typ != other and typ in other.__mro__:
|
||
|
return True
|
||
|
return False
|
||
|
types = [n for n in types if not is_strict_base(n)]
|
||
|
# Subclasses of the ABCs in *types* which are also implemented by
|
||
|
# *cls* can be used to stabilize ABC ordering.
|
||
|
type_set = set(types)
|
||
|
mro = []
|
||
|
for typ in types:
|
||
|
found = []
|
||
|
for sub in typ.__subclasses__():
|
||
|
if sub not in bases and issubclass(cls, sub):
|
||
|
found.append([s for s in sub.__mro__ if s in type_set])
|
||
|
if not found:
|
||
|
mro.append(typ)
|
||
|
continue
|
||
|
# Favor subclasses with the biggest number of useful bases
|
||
|
found.sort(key=len, reverse=True)
|
||
|
for sub in found:
|
||
|
for subcls in sub:
|
||
|
if subcls not in mro:
|
||
|
mro.append(subcls)
|
||
|
return _c3_mro(cls, abcs=mro)
|
||
|
|
||
|
def _find_impl(cls, registry):
|
||
|
"""Returns the best matching implementation from *registry* for type *cls*.
|
||
|
|
||
|
Where there is no registered implementation for a specific type, its method
|
||
|
resolution order is used to find a more generic implementation.
|
||
|
|
||
|
Note: if *registry* does not contain an implementation for the base
|
||
|
*object* type, this function may return None.
|
||
|
|
||
|
"""
|
||
|
mro = _compose_mro(cls, registry.keys())
|
||
|
match = None
|
||
|
for t in mro:
|
||
|
if match is not None:
|
||
|
# If *match* is an implicit ABC but there is another unrelated,
|
||
|
# equally matching implicit ABC, refuse the temptation to guess.
|
||
|
if (t in registry and t not in cls.__mro__
|
||
|
and match not in cls.__mro__
|
||
|
and not issubclass(match, t)):
|
||
|
raise RuntimeError("Ambiguous dispatch: {} or {}".format(
|
||
|
match, t))
|
||
|
break
|
||
|
if t in registry:
|
||
|
match = t
|
||
|
return registry.get(match)
|
||
|
|
||
|
def singledispatch(func):
|
||
|
"""Single-dispatch generic function decorator.
|
||
|
|
||
|
Transforms a function into a generic function, which can have different
|
||
|
behaviours depending upon the type of its first argument. The decorated
|
||
|
function acts as the default implementation, and additional
|
||
|
implementations can be registered using the register() attribute of the
|
||
|
generic function.
|
||
|
"""
|
||
|
# There are many programs that use functools without singledispatch, so we
|
||
|
# trade-off making singledispatch marginally slower for the benefit of
|
||
|
# making start-up of such applications slightly faster.
|
||
|
import types, weakref
|
||
|
|
||
|
registry = {}
|
||
|
dispatch_cache = weakref.WeakKeyDictionary()
|
||
|
cache_token = None
|
||
|
|
||
|
def dispatch(cls):
|
||
|
"""generic_func.dispatch(cls) -> <function implementation>
|
||
|
|
||
|
Runs the dispatch algorithm to return the best available implementation
|
||
|
for the given *cls* registered on *generic_func*.
|
||
|
|
||
|
"""
|
||
|
nonlocal cache_token
|
||
|
if cache_token is not None:
|
||
|
current_token = get_cache_token()
|
||
|
if cache_token != current_token:
|
||
|
dispatch_cache.clear()
|
||
|
cache_token = current_token
|
||
|
try:
|
||
|
impl = dispatch_cache[cls]
|
||
|
except KeyError:
|
||
|
try:
|
||
|
impl = registry[cls]
|
||
|
except KeyError:
|
||
|
impl = _find_impl(cls, registry)
|
||
|
dispatch_cache[cls] = impl
|
||
|
return impl
|
||
|
|
||
|
def _is_valid_dispatch_type(cls):
|
||
|
return isinstance(cls, type) and not isinstance(cls, GenericAlias)
|
||
|
|
||
|
def register(cls, func=None):
|
||
|
"""generic_func.register(cls, func) -> func
|
||
|
|
||
|
Registers a new implementation for the given *cls* on a *generic_func*.
|
||
|
|
||
|
"""
|
||
|
nonlocal cache_token
|
||
|
if _is_valid_dispatch_type(cls):
|
||
|
if func is None:
|
||
|
return lambda f: register(cls, f)
|
||
|
else:
|
||
|
if func is not None:
|
||
|
raise TypeError(
|
||
|
f"Invalid first argument to `register()`. "
|
||
|
f"{cls!r} is not a class."
|
||
|
)
|
||
|
ann = getattr(cls, '__annotations__', {})
|
||
|
if not ann:
|
||
|
raise TypeError(
|
||
|
f"Invalid first argument to `register()`: {cls!r}. "
|
||
|
f"Use either `@register(some_class)` or plain `@register` "
|
||
|
f"on an annotated function."
|
||
|
)
|
||
|
func = cls
|
||
|
|
||
|
# only import typing if annotation parsing is necessary
|
||
|
from typing import get_type_hints
|
||
|
argname, cls = next(iter(get_type_hints(func).items()))
|
||
|
if not _is_valid_dispatch_type(cls):
|
||
|
raise TypeError(
|
||
|
f"Invalid annotation for {argname!r}. "
|
||
|
f"{cls!r} is not a class."
|
||
|
)
|
||
|
|
||
|
registry[cls] = func
|
||
|
if cache_token is None and hasattr(cls, '__abstractmethods__'):
|
||
|
cache_token = get_cache_token()
|
||
|
dispatch_cache.clear()
|
||
|
return func
|
||
|
|
||
|
def wrapper(*args, **kw):
|
||
|
if not args:
|
||
|
raise TypeError(f'{funcname} requires at least '
|
||
|
'1 positional argument')
|
||
|
|
||
|
return dispatch(args[0].__class__)(*args, **kw)
|
||
|
|
||
|
funcname = getattr(func, '__name__', 'singledispatch function')
|
||
|
registry[object] = func
|
||
|
wrapper.register = register
|
||
|
wrapper.dispatch = dispatch
|
||
|
wrapper.registry = types.MappingProxyType(registry)
|
||
|
wrapper._clear_cache = dispatch_cache.clear
|
||
|
update_wrapper(wrapper, func)
|
||
|
return wrapper
|
||
|
|
||
|
|
||
|
# Descriptor version
|
||
|
class singledispatchmethod:
|
||
|
"""Single-dispatch generic method descriptor.
|
||
|
|
||
|
Supports wrapping existing descriptors and handles non-descriptor
|
||
|
callables as instance methods.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, func):
|
||
|
if not callable(func) and not hasattr(func, "__get__"):
|
||
|
raise TypeError(f"{func!r} is not callable or a descriptor")
|
||
|
|
||
|
self.dispatcher = singledispatch(func)
|
||
|
self.func = func
|
||
|
|
||
|
def register(self, cls, method=None):
|
||
|
"""generic_method.register(cls, func) -> func
|
||
|
|
||
|
Registers a new implementation for the given *cls* on a *generic_method*.
|
||
|
"""
|
||
|
return self.dispatcher.register(cls, func=method)
|
||
|
|
||
|
def __get__(self, obj, cls=None):
|
||
|
def _method(*args, **kwargs):
|
||
|
method = self.dispatcher.dispatch(args[0].__class__)
|
||
|
return method.__get__(obj, cls)(*args, **kwargs)
|
||
|
|
||
|
_method.__isabstractmethod__ = self.__isabstractmethod__
|
||
|
_method.register = self.register
|
||
|
update_wrapper(_method, self.func)
|
||
|
return _method
|
||
|
|
||
|
@property
|
||
|
def __isabstractmethod__(self):
|
||
|
return getattr(self.func, '__isabstractmethod__', False)
|
||
|
|
||
|
|
||
|
################################################################################
|
||
|
### cached_property() - computed once per instance, cached as attribute
|
||
|
################################################################################
|
||
|
|
||
|
_NOT_FOUND = object()
|
||
|
|
||
|
|
||
|
class cached_property:
|
||
|
def __init__(self, func):
|
||
|
self.func = func
|
||
|
self.attrname = None
|
||
|
self.__doc__ = func.__doc__
|
||
|
self.lock = RLock()
|
||
|
|
||
|
def __set_name__(self, owner, name):
|
||
|
if self.attrname is None:
|
||
|
self.attrname = name
|
||
|
elif name != self.attrname:
|
||
|
raise TypeError(
|
||
|
"Cannot assign the same cached_property to two different names "
|
||
|
f"({self.attrname!r} and {name!r})."
|
||
|
)
|
||
|
|
||
|
def __get__(self, instance, owner=None):
|
||
|
if instance is None:
|
||
|
return self
|
||
|
if self.attrname is None:
|
||
|
raise TypeError(
|
||
|
"Cannot use cached_property instance without calling __set_name__ on it.")
|
||
|
try:
|
||
|
cache = instance.__dict__
|
||
|
except AttributeError: # not all objects have __dict__ (e.g. class defines slots)
|
||
|
msg = (
|
||
|
f"No '__dict__' attribute on {type(instance).__name__!r} "
|
||
|
f"instance to cache {self.attrname!r} property."
|
||
|
)
|
||
|
raise TypeError(msg) from None
|
||
|
val = cache.get(self.attrname, _NOT_FOUND)
|
||
|
if val is _NOT_FOUND:
|
||
|
with self.lock:
|
||
|
# check if another thread filled cache while we awaited lock
|
||
|
val = cache.get(self.attrname, _NOT_FOUND)
|
||
|
if val is _NOT_FOUND:
|
||
|
val = self.func(instance)
|
||
|
try:
|
||
|
cache[self.attrname] = val
|
||
|
except TypeError:
|
||
|
msg = (
|
||
|
f"The '__dict__' attribute on {type(instance).__name__!r} instance "
|
||
|
f"does not support item assignment for caching {self.attrname!r} property."
|
||
|
)
|
||
|
raise TypeError(msg) from None
|
||
|
return val
|
||
|
|
||
|
__class_getitem__ = classmethod(GenericAlias)
|