143 lines
4.3 KiB
143 lines
4.3 KiB
6 years ago
|
from __future__ import absolute_import, print_function, division
|
||
|
|
||
|
import random
|
||
|
|
||
|
from .utils import import_required
|
||
|
|
||
|
|
||
|
def timeseries(
|
||
|
start='2000-01-01',
|
||
|
end='2000-01-31',
|
||
|
freq='1s',
|
||
|
partition_freq='1d',
|
||
|
dtypes={'name': str, 'id': int, 'x': float, 'y': float},
|
||
|
seed=None,
|
||
|
):
|
||
|
""" Create timeseries dataframe with random data
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : datetime (or datetime-like string)
|
||
|
Start of time series
|
||
|
end : datetime (or datetime-like string)
|
||
|
End of time series
|
||
|
dtypes : dict
|
||
|
Mapping of column names to types.
|
||
|
Valid types include {float, int, str, 'category'}
|
||
|
freq : string
|
||
|
String like '2s' or '1H' or '12W' for the time series frequency
|
||
|
partition_freq : string
|
||
|
String like '1M' or '2Y' to divide the dataframe into partitions
|
||
|
seed : int (optional)
|
||
|
Randomstate seed
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import dask
|
||
|
>>> df = dask.datasets.timeseries()
|
||
|
>>> df.head() # doctest: +SKIP
|
||
|
timestamp id name x y
|
||
|
2000-01-01 00:00:00 967 Jerry -0.031348 -0.040633
|
||
|
2000-01-01 00:00:01 1066 Michael -0.262136 0.307107
|
||
|
2000-01-01 00:00:02 988 Wendy -0.526331 0.128641
|
||
|
2000-01-01 00:00:03 1016 Yvonne 0.620456 0.767270
|
||
|
2000-01-01 00:00:04 998 Ursula 0.684902 -0.463278
|
||
|
"""
|
||
|
from dask.dataframe.io.demo import make_timeseries
|
||
|
return make_timeseries(start=start, end=end, freq=freq,
|
||
|
partition_freq=partition_freq,
|
||
|
seed=seed, dtypes=dtypes)
|
||
|
|
||
|
|
||
|
def _generate_mimesis(field, schema_description, records_per_partition, seed):
|
||
|
""" Generate data for a single partition of a dask bag
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
_make_mimesis
|
||
|
"""
|
||
|
from mimesis.schema import Schema, Field
|
||
|
field = Field(seed=seed, **field)
|
||
|
schema = Schema(schema=lambda: schema_description(field))
|
||
|
for i in range(records_per_partition):
|
||
|
yield schema.create(iterations=1)[0]
|
||
|
|
||
|
|
||
|
def _make_mimesis(field, schema, npartitions, records_per_partition, seed=None):
|
||
|
"""
|
||
|
Make a Dask Bag filled with data randomly generated by the mimesis projet
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
field: dict
|
||
|
keyword arguments to pass to ``mimesis.Field``
|
||
|
schema: Callable[Field] -> dict
|
||
|
The schema to use to generate the data
|
||
|
npartitions: int
|
||
|
records_per_partition: int
|
||
|
seed: int, None
|
||
|
Seed for random data
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Dask Bag
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
make_people
|
||
|
"""
|
||
|
import dask.bag as db
|
||
|
from dask.base import tokenize
|
||
|
|
||
|
field = field or {}
|
||
|
|
||
|
if seed is None:
|
||
|
seed = random.random()
|
||
|
|
||
|
seeds = db.core.random_state_data_python(npartitions, seed)
|
||
|
|
||
|
name = 'mimesis-' + tokenize(field, schema, npartitions, records_per_partition, seed)
|
||
|
dsk = {(name, i): (_generate_mimesis, field, schema, records_per_partition, seed)
|
||
|
for i, seed in enumerate(seeds)}
|
||
|
|
||
|
return db.Bag(dsk, name, npartitions)
|
||
|
|
||
|
|
||
|
def make_people(npartitions=10, records_per_partition=1000, seed=None, locale='en'):
|
||
|
""" Make a dataset of random people
|
||
|
|
||
|
This makes a Dask Bag with dictionary records of randomly generated people.
|
||
|
This requires the optional library ``mimesis`` to generate records.
|
||
|
|
||
|
Paramters
|
||
|
---------
|
||
|
npartitions : int
|
||
|
Number of partitions
|
||
|
records_per_partition : int
|
||
|
Number of records in each partition
|
||
|
seed : int, (optional)
|
||
|
Random seed
|
||
|
locale : str
|
||
|
Language locale, like 'en', 'fr', 'zh', or 'ru'
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
b: Dask Bag
|
||
|
"""
|
||
|
import_required('mimesis',
|
||
|
'The mimesis module is required for this function. Try:\n'
|
||
|
' pip install mimesis')
|
||
|
|
||
|
schema = lambda field: {
|
||
|
'age': field('person.age'),
|
||
|
'name': (field('person.name'), field('person.surname')),
|
||
|
'occupation': field('person.occupation'),
|
||
|
'telephone': field('person.telephone'),
|
||
|
'address': {'address': field('address.address'),
|
||
|
'city': field('address.city')},
|
||
|
'credit-card': {'number': field('payment.credit_card_number'),
|
||
|
'expiration-date': field('payment.credit_card_expiration_date')},
|
||
|
}
|
||
|
|
||
|
return _make_mimesis({'locale': locale}, schema, npartitions, records_per_partition, seed)
|