You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ORPA-pyOpenRPA/WPy32-3720/python-3.7.2/Lib/site-packages/dask/dataframe/rolling.py

335 lines
12 KiB

6 years ago
from __future__ import absolute_import, division, print_function
import datetime
import pandas as pd
from pandas.core.window import Rolling as pd_Rolling
from numbers import Integral
from ..base import tokenize
from ..utils import M, funcname, derived_from
from ..highlevelgraph import HighLevelGraph
from .core import _emulate
from .utils import make_meta, PANDAS_VERSION
def overlap_chunk(func, prev_part, current_part, next_part, before, after,
args, kwargs):
msg = ("Partition size is less than overlapping "
"window size. Try using ``df.repartition`` "
"to increase the partition size.")
if prev_part is not None and isinstance(before, Integral):
if prev_part.shape[0] != before:
raise NotImplementedError(msg)
if next_part is not None and isinstance(after, Integral):
if next_part.shape[0] != after:
raise NotImplementedError(msg)
# We validate that the window isn't too large for tiemdeltas in map_overlap
parts = [p for p in (prev_part, current_part, next_part) if p is not None]
combined = pd.concat(parts)
out = func(combined, *args, **kwargs)
if prev_part is None:
before = None
if isinstance(before, datetime.timedelta):
before = len(prev_part)
if next_part is None:
return out.iloc[before:]
if isinstance(after, datetime.timedelta):
after = len(next_part)
return out.iloc[before:-after]
def map_overlap(func, df, before, after, *args, **kwargs):
"""Apply a function to each partition, sharing rows with adjacent partitions.
Parameters
----------
func : function
Function applied to each partition.
df : dd.DataFrame, dd.Series
before : int or timedelta
The rows to prepend to partition ``i`` from the end of
partition ``i - 1``.
after : int or timedelta
The rows to append to partition ``i`` from the beginning
of partition ``i + 1``.
args, kwargs :
Arguments and keywords to pass to the function. The partition will
be the first argument, and these will be passed *after*.
See Also
--------
dd.DataFrame.map_overlap
"""
if (isinstance(before, datetime.timedelta) or isinstance(after, datetime.timedelta)):
if not df.index._meta_nonempty.is_all_dates:
raise TypeError("Must have a `DatetimeIndex` when using string offset "
"for `before` and `after`")
else:
if not (isinstance(before, Integral) and before >= 0 and
isinstance(after, Integral) and after >= 0):
raise ValueError("before and after must be positive integers")
if 'token' in kwargs:
func_name = kwargs.pop('token')
token = tokenize(df, before, after, *args, **kwargs)
else:
func_name = 'overlap-' + funcname(func)
token = tokenize(func, df, before, after, *args, **kwargs)
if 'meta' in kwargs:
meta = kwargs.pop('meta')
else:
meta = _emulate(func, df, *args, **kwargs)
meta = make_meta(meta, index=df._meta.index)
name = '{0}-{1}'.format(func_name, token)
name_a = 'overlap-prepend-' + tokenize(df, before)
name_b = 'overlap-append-' + tokenize(df, after)
df_name = df._name
dsk = {}
# Have to do the checks for too large windows in the time-delta case
# here instead of in `overlap_chunk`, since we can't rely on fix-frequency
# index
timedelta_partition_message = (
"Partition size is less than specified window. "
"Try using ``df.repartition`` to increase the partition size"
)
if before and isinstance(before, Integral):
dsk.update({(name_a, i): (M.tail, (df_name, i), before)
for i in range(df.npartitions - 1)})
prevs = [None] + [(name_a, i) for i in range(df.npartitions - 1)]
elif isinstance(before, datetime.timedelta):
# Assumes monotonic (increasing?) index
deltas = pd.Series(df.divisions).diff().iloc[1:-1]
if (before > deltas).any():
raise ValueError(timedelta_partition_message)
dsk.update({(name_a, i): (_tail_timedelta, (df_name, i), (df_name, i + 1), before)
for i in range(df.npartitions - 1)})
prevs = [None] + [(name_a, i) for i in range(df.npartitions - 1)]
else:
prevs = [None] * df.npartitions
if after and isinstance(after, Integral):
dsk.update({(name_b, i): (M.head, (df_name, i), after)
for i in range(1, df.npartitions)})
nexts = [(name_b, i) for i in range(1, df.npartitions)] + [None]
elif isinstance(after, datetime.timedelta):
# TODO: Do we have a use-case for this? Pandas doesn't allow negative rolling windows
deltas = pd.Series(df.divisions).diff().iloc[1:-1]
if (after > deltas).any():
raise ValueError(timedelta_partition_message)
dsk.update({(name_b, i): (_head_timedelta, (df_name, i - 0), (df_name, i), after)
for i in range(1, df.npartitions)})
nexts = [(name_b, i) for i in range(1, df.npartitions)] + [None]
else:
nexts = [None] * df.npartitions
for i, (prev, current, next) in enumerate(zip(prevs, df.__dask_keys__(), nexts)):
dsk[(name, i)] = (overlap_chunk, func, prev, current, next, before,
after, args, kwargs)
graph = HighLevelGraph.from_collections(name, dsk, dependencies=[df])
return df._constructor(graph, name, meta, df.divisions)
def _head_timedelta(current, next_, after):
"""Return rows of ``next_`` whose index is before the last
observation in ``current`` + ``after``.
Parameters
----------
current : DataFrame
next_ : DataFrame
after : timedelta
Returns
-------
overlapped : DataFrame
"""
return next_[next_.index < (current.index.max() + after)]
def _tail_timedelta(prev, current, before):
"""Return rows of ``prev`` whose index is after the first
observation in ``current`` - ``before``.
Parameters
----------
current : DataFrame
next_ : DataFrame
before : timedelta
Returns
-------
overlapped : DataFrame
"""
return prev[prev.index > (current.index.min() - before)]
def pandas_rolling_method(df, rolling_kwargs, name, *args, **kwargs):
rolling = df.rolling(**rolling_kwargs)
return getattr(rolling, name)(*args, **kwargs)
class Rolling(object):
"""Provides rolling window calculations."""
def __init__(self, obj, window=None, min_periods=None, freq=None,
center=False, win_type=None, axis=0):
if freq is not None:
msg = 'The deprecated freq argument is not supported.'
raise NotImplementedError(msg)
self.obj = obj # dataframe or series
self.window = window
self.min_periods = min_periods
self.center = center
self.axis = axis
self.win_type = win_type
# Allow pandas to raise if appropriate
pd_roll = obj._meta.rolling(**self._rolling_kwargs())
# Using .rolling(window='2s'), pandas will convert the
# offset str to a window in nanoseconds. But pandas doesn't
# accept the integer window with win_type='freq', so we store
# that information here.
# See https://github.com/pandas-dev/pandas/issues/15969
self._window = pd_roll.window
self._win_type = pd_roll.win_type
self._min_periods = pd_roll.min_periods
def _rolling_kwargs(self):
return {'window': self.window,
'min_periods': self.min_periods,
'center': self.center,
'win_type': self.win_type,
'axis': self.axis}
@property
def _has_single_partition(self):
"""
Indicator for whether the object has a single partition (True)
or multiple (False).
"""
return (self.axis in (1, 'columns') or
(isinstance(self.window, Integral) and self.window <= 1) or
self.obj.npartitions == 1)
def _call_method(self, method_name, *args, **kwargs):
rolling_kwargs = self._rolling_kwargs()
meta = pandas_rolling_method(self.obj._meta_nonempty, rolling_kwargs,
method_name, *args, **kwargs)
if self._has_single_partition:
# There's no overlap just use map_partitions
return self.obj.map_partitions(pandas_rolling_method,
rolling_kwargs, method_name,
*args, token=method_name, meta=meta,
**kwargs)
# Convert window to overlap
if self.center:
before = self.window // 2
after = self.window - before - 1
elif self._win_type == 'freq':
before = pd.Timedelta(self.window)
after = 0
else:
before = self.window - 1
after = 0
return map_overlap(pandas_rolling_method, self.obj, before, after,
rolling_kwargs, method_name, *args,
token=method_name, meta=meta, **kwargs)
@derived_from(pd_Rolling)
def count(self):
return self._call_method('count')
@derived_from(pd_Rolling)
def sum(self):
return self._call_method('sum')
@derived_from(pd_Rolling)
def mean(self):
return self._call_method('mean')
@derived_from(pd_Rolling)
def median(self):
return self._call_method('median')
@derived_from(pd_Rolling)
def min(self):
return self._call_method('min')
@derived_from(pd_Rolling)
def max(self):
return self._call_method('max')
@derived_from(pd_Rolling)
def std(self, ddof=1):
return self._call_method('std', ddof=1)
@derived_from(pd_Rolling)
def var(self, ddof=1):
return self._call_method('var', ddof=1)
@derived_from(pd_Rolling)
def skew(self):
return self._call_method('skew')
@derived_from(pd_Rolling)
def kurt(self):
return self._call_method('kurt')
@derived_from(pd_Rolling)
def quantile(self, quantile):
return self._call_method('quantile', quantile)
@derived_from(pd_Rolling)
def apply(self, func, args=(), kwargs={}, **kwds):
# TODO: In a future version of pandas this will change to
# raw=False. Think about inspecting the function signature and setting
# to that?
if PANDAS_VERSION >= '0.23.0':
kwds.setdefault("raw", None)
else:
if kwargs:
msg = ("Invalid argument to 'apply'. Keyword arguments "
"should be given as a dict to the 'kwargs' arugment. ")
raise TypeError(msg)
return self._call_method('apply', func, args=args,
kwargs=kwargs, **kwds)
@derived_from(pd_Rolling)
def aggregate(self, func, args=(), kwargs={}, **kwds):
return self._call_method('agg', func, args=args,
kwargs=kwargs, **kwds)
agg = aggregate
def __repr__(self):
def order(item):
k, v = item
_order = {'window': 0, 'min_periods': 1, 'center': 2,
'win_type': 3, 'axis': 4}
return _order[k]
rolling_kwargs = self._rolling_kwargs()
# pandas translates the '2S' offset to nanoseconds
rolling_kwargs['window'] = self._window
rolling_kwargs['win_type'] = self._win_type
return 'Rolling [{}]'.format(','.join(
'{}={}'.format(k, v)
for k, v in sorted(rolling_kwargs.items(), key=order)
if v is not None))