You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
370 lines
11 KiB
370 lines
11 KiB
6 years ago
|
from __future__ import absolute_import, division, print_function
|
||
|
|
||
|
from collections import namedtuple
|
||
|
from itertools import starmap
|
||
|
from timeit import default_timer
|
||
|
from time import sleep
|
||
|
from multiprocessing import Process, Pipe, current_process
|
||
|
|
||
|
from ..callbacks import Callback
|
||
|
from ..utils import import_required
|
||
|
|
||
|
|
||
|
# Stores execution data for each task
|
||
|
TaskData = namedtuple('TaskData', ('key', 'task', 'start_time',
|
||
|
'end_time', 'worker_id'))
|
||
|
|
||
|
|
||
|
class Profiler(Callback):
|
||
|
"""A profiler for dask execution at the task level.
|
||
|
|
||
|
Records the following information for each task:
|
||
|
1. Key
|
||
|
2. Task
|
||
|
3. Start time in seconds since the epoch
|
||
|
4. Finish time in seconds since the epoch
|
||
|
5. Worker id
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> from operator import add, mul
|
||
|
>>> from dask.threaded import get
|
||
|
>>> dsk = {'x': 1, 'y': (add, 'x', 10), 'z': (mul, 'y', 2)}
|
||
|
>>> with Profiler() as prof:
|
||
|
... get(dsk, 'z')
|
||
|
22
|
||
|
|
||
|
>>> prof.results # doctest: +SKIP
|
||
|
[('y', (add, 'x', 10), 1435352238.48039, 1435352238.480655, 140285575100160),
|
||
|
('z', (mul, 'y', 2), 1435352238.480657, 1435352238.480803, 140285566707456)]
|
||
|
|
||
|
These results can be visualized in a bokeh plot using the ``visualize``
|
||
|
method. Note that this requires bokeh to be installed.
|
||
|
|
||
|
>>> prof.visualize() # doctest: +SKIP
|
||
|
|
||
|
You can activate the profiler globally
|
||
|
|
||
|
>>> prof.register() # doctest: +SKIP
|
||
|
|
||
|
If you use the profiler globally you will need to clear out old results
|
||
|
manually.
|
||
|
|
||
|
>>> prof.clear()
|
||
|
|
||
|
"""
|
||
|
def __init__(self):
|
||
|
self._results = {}
|
||
|
self.results = []
|
||
|
self._dsk = {}
|
||
|
|
||
|
def __enter__(self):
|
||
|
self.clear()
|
||
|
return super(Profiler, self).__enter__()
|
||
|
|
||
|
def _start(self, dsk):
|
||
|
self._dsk.update(dsk)
|
||
|
|
||
|
def _pretask(self, key, dsk, state):
|
||
|
start = default_timer()
|
||
|
self._results[key] = (key, dsk[key], start)
|
||
|
|
||
|
def _posttask(self, key, value, dsk, state, id):
|
||
|
end = default_timer()
|
||
|
self._results[key] += (end, id)
|
||
|
|
||
|
def _finish(self, dsk, state, failed):
|
||
|
results = dict((k, v) for k, v in self._results.items() if len(v) == 5)
|
||
|
self.results += list(starmap(TaskData, results.values()))
|
||
|
self._results.clear()
|
||
|
|
||
|
def _plot(self, **kwargs):
|
||
|
from .profile_visualize import plot_tasks
|
||
|
return plot_tasks(self.results, self._dsk, **kwargs)
|
||
|
|
||
|
def visualize(self, **kwargs):
|
||
|
"""Visualize the profiling run in a bokeh plot.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
dask.diagnostics.profile_visualize.visualize
|
||
|
"""
|
||
|
from .profile_visualize import visualize
|
||
|
return visualize(self, **kwargs)
|
||
|
|
||
|
def clear(self):
|
||
|
"""Clear out old results from profiler"""
|
||
|
self._results.clear()
|
||
|
del self.results[:]
|
||
|
self._dsk = {}
|
||
|
|
||
|
|
||
|
ResourceData = namedtuple('ResourceData', ('time', 'mem', 'cpu'))
|
||
|
|
||
|
|
||
|
class ResourceProfiler(Callback):
|
||
|
"""A profiler for resource use.
|
||
|
|
||
|
Records the following each timestep
|
||
|
1. Time in seconds since the epoch
|
||
|
2. Memory usage in MB
|
||
|
3. % CPU usage
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> from operator import add, mul
|
||
|
>>> from dask.threaded import get
|
||
|
>>> dsk = {'x': 1, 'y': (add, 'x', 10), 'z': (mul, 'y', 2)}
|
||
|
>>> with ResourceProfiler() as prof: # doctest: +SKIP
|
||
|
... get(dsk, 'z')
|
||
|
22
|
||
|
|
||
|
These results can be visualized in a bokeh plot using the ``visualize``
|
||
|
method. Note that this requires bokeh to be installed.
|
||
|
|
||
|
>>> prof.visualize() # doctest: +SKIP
|
||
|
|
||
|
You can activate the profiler globally
|
||
|
|
||
|
>>> prof.register() # doctest: +SKIP
|
||
|
|
||
|
If you use the profiler globally you will need to clear out old results
|
||
|
manually.
|
||
|
|
||
|
>>> prof.clear() # doctest: +SKIP
|
||
|
|
||
|
Note that when used as a context manager data will be collected throughout
|
||
|
the duration of the enclosed block. In contrast, when registered globally
|
||
|
data will only be collected while a dask scheduler is active.
|
||
|
"""
|
||
|
def __init__(self, dt=1):
|
||
|
self._dt = dt
|
||
|
self._entered = False
|
||
|
self._tracker = None
|
||
|
self.results = []
|
||
|
|
||
|
def _is_running(self):
|
||
|
return self._tracker is not None and self._tracker.is_alive()
|
||
|
|
||
|
def _start_collect(self):
|
||
|
if not self._is_running():
|
||
|
self._tracker = _Tracker(self._dt)
|
||
|
self._tracker.start()
|
||
|
self._tracker.parent_conn.send('collect')
|
||
|
|
||
|
def _stop_collect(self):
|
||
|
if self._is_running():
|
||
|
self._tracker.parent_conn.send('send_data')
|
||
|
self.results.extend(starmap(ResourceData, self._tracker.parent_conn.recv()))
|
||
|
|
||
|
def __enter__(self):
|
||
|
self._entered = True
|
||
|
self.clear()
|
||
|
self._start_collect()
|
||
|
return super(ResourceProfiler, self).__enter__()
|
||
|
|
||
|
def __exit__(self, *args):
|
||
|
self._entered = False
|
||
|
self._stop_collect()
|
||
|
self.close()
|
||
|
super(ResourceProfiler, self).__exit__(*args)
|
||
|
|
||
|
def _start(self, dsk):
|
||
|
self._start_collect()
|
||
|
|
||
|
def _finish(self, dsk, state, failed):
|
||
|
if not self._entered:
|
||
|
self._stop_collect()
|
||
|
|
||
|
def close(self):
|
||
|
"""Shutdown the resource tracker process"""
|
||
|
if self._is_running():
|
||
|
self._tracker.shutdown()
|
||
|
self._tracker = None
|
||
|
|
||
|
__del__ = close
|
||
|
|
||
|
def clear(self):
|
||
|
self.results = []
|
||
|
|
||
|
def _plot(self, **kwargs):
|
||
|
from .profile_visualize import plot_resources
|
||
|
return plot_resources(self.results, **kwargs)
|
||
|
|
||
|
def visualize(self, **kwargs):
|
||
|
"""Visualize the profiling run in a bokeh plot.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
dask.diagnostics.profile_visualize.visualize
|
||
|
"""
|
||
|
from .profile_visualize import visualize
|
||
|
return visualize(self, **kwargs)
|
||
|
|
||
|
|
||
|
class _Tracker(Process):
|
||
|
"""Background process for tracking resource usage"""
|
||
|
def __init__(self, dt=1):
|
||
|
Process.__init__(self)
|
||
|
self.daemon = True
|
||
|
self.dt = dt
|
||
|
self.parent_pid = current_process().pid
|
||
|
self.parent_conn, self.child_conn = Pipe()
|
||
|
|
||
|
def shutdown(self):
|
||
|
if not self.parent_conn.closed:
|
||
|
self.parent_conn.send('shutdown')
|
||
|
self.parent_conn.close()
|
||
|
self.join()
|
||
|
|
||
|
def _update_pids(self, pid):
|
||
|
return [self.parent] + [p for p in self.parent.children()
|
||
|
if p.pid != pid and p.status() != 'zombie']
|
||
|
|
||
|
def run(self):
|
||
|
|
||
|
psutil = import_required("psutil", "Tracking resource usage requires "
|
||
|
"`psutil` to be installed")
|
||
|
self.parent = psutil.Process(self.parent_pid)
|
||
|
|
||
|
pid = current_process()
|
||
|
data = []
|
||
|
while True:
|
||
|
try:
|
||
|
msg = self.child_conn.recv()
|
||
|
except KeyboardInterrupt:
|
||
|
continue
|
||
|
if msg == 'shutdown':
|
||
|
break
|
||
|
elif msg == 'collect':
|
||
|
ps = self._update_pids(pid)
|
||
|
while not data or not self.child_conn.poll():
|
||
|
tic = default_timer()
|
||
|
mem = cpu = 0
|
||
|
for p in ps:
|
||
|
try:
|
||
|
mem2 = p.memory_info().rss
|
||
|
cpu2 = p.cpu_percent()
|
||
|
except Exception: # could be a few different exceptions
|
||
|
pass
|
||
|
else:
|
||
|
# Only increment if both were successful
|
||
|
mem += mem2
|
||
|
cpu += cpu2
|
||
|
data.append((tic, mem / 1e6, cpu))
|
||
|
sleep(self.dt)
|
||
|
elif msg == 'send_data':
|
||
|
self.child_conn.send(data)
|
||
|
data = []
|
||
|
self.child_conn.close()
|
||
|
|
||
|
|
||
|
CacheData = namedtuple('CacheData', ('key', 'task', 'metric', 'cache_time',
|
||
|
'free_time'))
|
||
|
|
||
|
|
||
|
class CacheProfiler(Callback):
|
||
|
"""A profiler for dask execution at the scheduler cache level.
|
||
|
|
||
|
Records the following information for each task:
|
||
|
1. Key
|
||
|
2. Task
|
||
|
3. Size metric
|
||
|
4. Cache entry time in seconds since the epoch
|
||
|
5. Cache exit time in seconds since the epoch
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> from operator import add, mul
|
||
|
>>> from dask.threaded import get
|
||
|
>>> dsk = {'x': 1, 'y': (add, 'x', 10), 'z': (mul, 'y', 2)}
|
||
|
>>> with CacheProfiler() as prof:
|
||
|
... get(dsk, 'z')
|
||
|
22
|
||
|
|
||
|
>>> prof.results # doctest: +SKIP
|
||
|
[CacheData('y', (add, 'x', 10), 1, 1435352238.48039, 1435352238.480655),
|
||
|
CacheData('z', (mul, 'y', 2), 1, 1435352238.480657, 1435352238.480803)]
|
||
|
|
||
|
The default is to count each task (``metric`` is 1 for all tasks). Other
|
||
|
functions may used as a metric instead through the ``metric`` keyword. For
|
||
|
example, the ``nbytes`` function found in ``cachey`` can be used to measure
|
||
|
the number of bytes in the cache.
|
||
|
|
||
|
>>> from cachey import nbytes # doctest: +SKIP
|
||
|
>>> with CacheProfiler(metric=nbytes) as prof: # doctest: +SKIP
|
||
|
... get(dsk, 'z')
|
||
|
|
||
|
The profiling results can be visualized in a bokeh plot using the
|
||
|
``visualize`` method. Note that this requires bokeh to be installed.
|
||
|
|
||
|
>>> prof.visualize() # doctest: +SKIP
|
||
|
|
||
|
You can activate the profiler globally
|
||
|
|
||
|
>>> prof.register() # doctest: +SKIP
|
||
|
|
||
|
If you use the profiler globally you will need to clear out old results
|
||
|
manually.
|
||
|
|
||
|
>>> prof.clear()
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, metric=None, metric_name=None):
|
||
|
self.clear()
|
||
|
self._metric = metric if metric else lambda value: 1
|
||
|
if metric_name:
|
||
|
self._metric_name = metric_name
|
||
|
elif metric:
|
||
|
self._metric_name = metric.__name__
|
||
|
else:
|
||
|
self._metric_name = 'count'
|
||
|
|
||
|
def __enter__(self):
|
||
|
self.clear()
|
||
|
return super(CacheProfiler, self).__enter__()
|
||
|
|
||
|
def _start(self, dsk):
|
||
|
self._dsk.update(dsk)
|
||
|
if not self._start_time:
|
||
|
self._start_time = default_timer()
|
||
|
|
||
|
def _posttask(self, key, value, dsk, state, id):
|
||
|
t = default_timer()
|
||
|
self._cache[key] = (self._metric(value), t)
|
||
|
for k in state['released'].intersection(self._cache):
|
||
|
metric, start = self._cache.pop(k)
|
||
|
self.results.append(CacheData(k, dsk[k], metric, start, t))
|
||
|
|
||
|
def _finish(self, dsk, state, failed):
|
||
|
t = default_timer()
|
||
|
for k, (metric, start) in self._cache.items():
|
||
|
self.results.append(CacheData(k, dsk[k], metric, start, t))
|
||
|
self._cache.clear()
|
||
|
|
||
|
def _plot(self, **kwargs):
|
||
|
from .profile_visualize import plot_cache
|
||
|
return plot_cache(self.results, self._dsk, self._start_time,
|
||
|
self._metric_name, **kwargs)
|
||
|
|
||
|
def visualize(self, **kwargs):
|
||
|
"""Visualize the profiling run in a bokeh plot.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
dask.diagnostics.profile_visualize.visualize
|
||
|
"""
|
||
|
from .profile_visualize import visualize
|
||
|
return visualize(self, **kwargs)
|
||
|
|
||
|
def clear(self):
|
||
|
"""Clear out old results from profiler"""
|
||
|
self.results = []
|
||
|
self._cache = {}
|
||
|
self._dsk = {}
|
||
|
self._start_time = None
|