ORPA-pyOpenRPA/Resources/WPy64-3720/notebooks/docs/Winpython_checker.ipynb

933 lines
27 KiB

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Winpython Default checker"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import warnings\n",
"warnings.filterwarnings(\"ignore\", category=DeprecationWarning)\n",
"warnings.filterwarnings(\"ignore\", category=UserWarning)\n",
"warnings.filterwarnings(\"ignore\", category=FutureWarning)\n",
"# warnings.filterwarnings(\"ignore\") # would silence all warnings"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compilers: Numba and Cython\n",
"\n",
"##### Requirement\n",
"To get Cython working, Winpython 3.5 users should install \"Microsoft Visual C++ Build Tools 2015\" (visualcppbuildtools_full.exe, a 4 Go installation) at https://beta.visualstudio.com/download-visual-studio-vs/\n",
"\n",
"To get Numba working, not-windows10 users may have to install \"Microsoft Visual C++ 2015 Redistributable\" (vc_redist) at <https://beta.visualstudio.com/download-visual-studio-vs/>\n",
"\n",
"#### Compiler toolchains"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# checking Numba JIT toolchain\n",
"import numpy as np\n",
"image = np.zeros((1024, 1536), dtype = np.uint8)\n",
"\n",
"from pylab import imshow, show\n",
"from timeit import default_timer as timer\n",
"\n",
"def create_fractal(min_x, max_x, min_y, max_y, image, iters , mandelx):\n",
" height = image.shape[0]\n",
" width = image.shape[1]\n",
" pixel_size_x = (max_x - min_x) / width\n",
" pixel_size_y = (max_y - min_y) / height\n",
" \n",
" for x in range(width):\n",
" real = min_x + x * pixel_size_x\n",
" for y in range(height):\n",
" imag = min_y + y * pixel_size_y\n",
" color = mandelx(real, imag, iters)\n",
" image[y, x] = color"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Numba (a JIT Compiler)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from numba import autojit\n",
"\n",
"@autojit\n",
"def mandel(x, y, max_iters):\n",
" c = complex(x, y)\n",
" z = 0.0j\n",
" for i in range(max_iters):\n",
" z = z*z + c\n",
" if (z.real*z.real + z.imag*z.imag) >= 4:\n",
" return i\n",
" return max_iters\n",
"\n",
"start = timer()\n",
"create_fractal(-2.0, 1.0, -1.0, 1.0, image, 20 , mandel) \n",
"dt = timer() - start\n",
"\n",
"print (\"Mandelbrot created by numba in %f s\" % dt)\n",
"imshow(image)\n",
"show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Cython (a compiler for writing C extensions for the Python language)\n",
"WinPython 3.5 and 3.6 users may not have mingwpy available, and so need \"VisualStudio C++ Community Edition 2015\" https://www.visualstudio.com/downloads/download-visual-studio-vs#d-visual-c "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cython + Mingwpy compiler toolchain test\n",
"%load_ext Cython"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%cython -a\n",
"# with %%cython -a , full C-speed lines are shown in white, slowest python-speed lines are shown in dark yellow lines \n",
"# ==> put your cython rewrite effort on dark yellow lines\n",
"def mandel_cython(x, y, max_iters):\n",
" cdef int i \n",
" cdef double cx, cy , zx, zy\n",
" cx , cy = x, y \n",
" zx , zy =0 ,0 \n",
" for i in range(max_iters):\n",
" zx , zy = zx*zx - zy*zy + cx , zx*zy*2 + cy\n",
" if (zx*zx + zy*zy) >= 4:\n",
" return i\n",
" return max_iters"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"start = timer()\n",
"create_fractal(-2.0, 1.0, -1.0, 1.0, image, 20 , mandel_cython) \n",
"dt = timer() - start\n",
"\n",
"print (\"Mandelbrot created by cython in %f s\" % dt)\n",
"imshow(image)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Graphics: Matplotlib, Pandas, Seaborn, Holoviews, Bokeh, bqplot, ipyleaflet, plotnine"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Matplotlib\n",
"# for more examples, see: http://matplotlib.org/gallery.html\n",
"from mpl_toolkits.mplot3d import axes3d\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib import cm\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.gca(projection='3d')\n",
"X, Y, Z = axes3d.get_test_data(0.05)\n",
"ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3)\n",
"cset = ax.contourf(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)\n",
"cset = ax.contourf(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)\n",
"cset = ax.contourf(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)\n",
"\n",
"ax.set_xlabel('X')\n",
"ax.set_xlim(-40, 40)\n",
"ax.set_ylabel('Y')\n",
"ax.set_ylim(-40, 40)\n",
"ax.set_zlabel('Z')\n",
"ax.set_zlim(-100, 100)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Seaborn\n",
"# for more examples, see http://stanford.edu/~mwaskom/software/seaborn/examples/index.html\n",
"import seaborn as sns\n",
"sns.set()\n",
"df = sns.load_dataset(\"iris\")\n",
"sns.pairplot(df, hue=\"species\", height=1.5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# altair-2.0.0 example\n",
"import altair as alt\n",
"\n",
"# Uncomment/run this line to enable Altair in JupyterLab/nteract:\n",
"#alt.renderers.enable('default') # api_v2\n",
"#alt.renderers.enable('notebook') # api_v2,if in Notebook\n",
"alt.Chart(df).mark_bar().encode(\n",
" x=alt.X('sepal_length', bin=alt.Bin(maxbins=50)),\n",
" y='count(*):Q',\n",
" color='species:N',\n",
" #column='species',\n",
").interactive() # api_v1 .configure_cell(width=200)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# temporary warning removal\n",
"import warnings\n",
"import matplotlib as mpl\n",
"warnings.filterwarnings(\"ignore\", category=mpl.cbook.MatplotlibDeprecationWarning)\n",
"# Holoviews\n",
"# for more example, see http://holoviews.org/Tutorials/index.html\n",
"import numpy as np\n",
"import holoviews as hv\n",
"hv.extension('matplotlib')\n",
"dots = np.linspace(-0.45, 0.45, 11)\n",
"fractal = hv.Image(image)\n",
"\n",
"layouts = {y: (fractal * hv.Points(fractal.sample([(i,y) for i in dots])) +\n",
" fractal.sample(y=y) )\n",
" for y in np.linspace(0, 0.45,11)}\n",
"\n",
"hv.HoloMap(layouts, kdims=['Y']).collate().cols(2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Bokeh 0.12.5 \n",
"import numpy as np\n",
"from six.moves import zip\n",
"from bokeh.plotting import figure, show, output_notebook\n",
"N = 4000\n",
"x = np.random.random(size=N) * 100\n",
"y = np.random.random(size=N) * 100\n",
"radii = np.random.random(size=N) * 1.5\n",
"colors = [\"#%02x%02x%02x\" % (int(r), int(g), 150) for r, g in zip(50+2*x, 30+2*y)]\n",
"\n",
"output_notebook()\n",
"TOOLS=\"hover,crosshair,pan,wheel_zoom,box_zoom,reset,tap,save,box_select,poly_select,lasso_select\"\n",
"\n",
"p = figure(tools=TOOLS)\n",
"p.scatter(x,y, radius=radii, fill_color=colors, fill_alpha=0.6, line_color=None)\n",
"show(p)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Datashader (holoviews+Bokeh)\n",
"import numpy as np\n",
"import pandas as pd\n",
"import holoviews as hv\n",
"import datashader as ds\n",
"from holoviews.operation.datashader import aggregate, shade, datashade, dynspread\n",
"from bokeh.models import DatetimeTickFormatter\n",
"hv.extension('bokeh')\n",
"\n",
"def time_series(T = 1, N = 100, mu = 0.1, sigma = 0.1, S0 = 20): \n",
" \"\"\"Parameterized noisy time series\"\"\"\n",
" dt = float(T)/N\n",
" t = np.linspace(0, T, N)\n",
" W = np.random.standard_normal(size = N) \n",
" W = np.cumsum(W)*np.sqrt(dt) # standard brownian motion\n",
" X = (mu-0.5*sigma**2)*t + sigma*W \n",
" S = S0*np.exp(X) # geometric brownian motion\n",
" return S\n",
"\n",
"def apply_formatter(plot, element):\n",
" plot.handles['xaxis'].formatter = DatetimeTickFormatter()\n",
" \n",
"drange = pd.date_range(start=\"2014-01-01\", end=\"2016-01-01\", freq='1D') # or '1min'\n",
"dates = drange.values.astype('int64')/10**6 # Convert dates to ints\n",
"curve = hv.Curve((dates, time_series(N=len(dates), sigma = 1)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%opts RGB [finalize_hooks=[apply_formatter] width=800]\n",
"%%opts Overlay [finalize_hooks=[apply_formatter] width=800] \n",
"%%opts Scatter [tools=['hover', 'box_select']] (line_color=\"black\" fill_color=\"red\" size=10)\n",
"\n",
"from holoviews.operation.timeseries import rolling, rolling_outlier_std\n",
"smoothed = rolling(curve, rolling_window=50)\n",
"outliers = rolling_outlier_std(curve, rolling_window=50, sigma=2)\n",
"datashade(curve, cmap=[\"blue\"]) * dynspread(datashade(smoothed, cmap=[\"red\"]),max_px=1) * outliers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#bqplot\n",
"from IPython.display import display\n",
"from bqplot import (Figure, Map, Mercator, Orthographic, ColorScale, ColorAxis,\n",
" AlbersUSA, topo_load, Tooltip)\n",
"def_tt = Tooltip(fields=['id', 'name'])\n",
"map_mark = Map(scales={'projection': Mercator()}, tooltip=def_tt)\n",
"map_mark.interactions = {'click': 'select', 'hover': 'tooltip'}\n",
"fig = Figure(marks=[map_mark], title='Interactions Example')\n",
"display(fig)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# ipyleaflet (javascript library usage)\n",
"from ipyleaflet import (\n",
" Map, Marker, TileLayer, ImageOverlay, Polyline, Polygon,\n",
" Rectangle, Circle, CircleMarker, GeoJSON, DrawControl\n",
")\n",
"from traitlets import link\n",
"center = [34.6252978589571, -77.34580993652344]\n",
"m = Map(center=[34.6252978589571, -77.34580993652344], zoom=10)\n",
"dc = DrawControl()\n",
"\n",
"def handle_draw(self, action, geo_json):\n",
" print(action)\n",
" print(geo_json)\n",
"m\n",
"m"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dc.on_draw(handle_draw)\n",
"m.add_control(dc)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plotnine: giving a taste of ggplot of R langage (formerly we were using ggpy)\n",
"from plotnine import ggplot, aes, geom_blank, geom_point, stat_smooth, facet_wrap, theme_bw\n",
"from plotnine.data import mtcars\n",
"ggplot(mtcars, aes(x='hp', y='wt', color='mpg')) + geom_point() +\\\n",
"facet_wrap(\"~cyl\") + theme_bw()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ipython Notebook: Interactivity & other"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import IPython;IPython.__version__"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Audio Example : https://github.com/ipython/ipywidgets/blob/master/examples/Beat%20Frequencies.ipynb\n",
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"from ipywidgets import interactive\n",
"from IPython.display import Audio, display\n",
"def beat_freq(f1=220.0, f2=224.0):\n",
" max_time = 3\n",
" rate = 8000\n",
" times = np.linspace(0,max_time,rate*max_time)\n",
" signal = np.sin(2*np.pi*f1*times) + np.sin(2*np.pi*f2*times)\n",
" print(f1, f2, abs(f1-f2))\n",
" display(Audio(data=signal, rate=rate))\n",
" try:\n",
" plt.plot(signal); #plt.plot(v.result);\n",
" except:\n",
" pass\n",
" return signal\n",
"v = interactive(beat_freq, f1=(200.0,300.0), f2=(200.0,300.0))\n",
"display(v)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Networks graph Example : https://github.com/ipython/ipywidgets/blob/master/examples/Exploring%20Graphs.ipynb\n",
"%matplotlib inline\n",
"from ipywidgets import interact\n",
"import matplotlib.pyplot as plt\n",
"import networkx as nx\n",
"# wrap a few graph generation functions so they have the same signature\n",
"\n",
"def random_lobster(n, m, k, p):\n",
" return nx.random_lobster(n, p, p / m)\n",
"\n",
"def powerlaw_cluster(n, m, k, p):\n",
" return nx.powerlaw_cluster_graph(n, m, p)\n",
"\n",
"def erdos_renyi(n, m, k, p):\n",
" return nx.erdos_renyi_graph(n, p)\n",
"\n",
"def newman_watts_strogatz(n, m, k, p):\n",
" return nx.newman_watts_strogatz_graph(n, k, p)\n",
"\n",
"@interact(n=(2,30), m=(1,10), k=(1,10), p=(0.0, 1.0, 0.001),\n",
" generator={'lobster': random_lobster,\n",
" 'power law': powerlaw_cluster,\n",
" 'Newman-Watts-Strogatz': newman_watts_strogatz,\n",
" u'Erdős-Rényi': erdos_renyi,\n",
" })\n",
"def plot_random_graph(n, m, k, p, generator):\n",
" g = generator(n, m, k, p)\n",
" nx.draw(g)\n",
" plt.title(generator.__name__)\n",
" plt.show()\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mathematical: statsmodels, lmfit, "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# checking statsmodels\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"plt.style.use('ggplot')\n",
"import statsmodels.api as sm\n",
"data = sm.datasets.anes96.load_pandas()\n",
"party_ID = np.arange(7)\n",
"labels = [\"Strong Democrat\", \"Weak Democrat\", \"Independent-Democrat\",\n",
" \"Independent-Independent\", \"Independent-Republican\",\n",
" \"Weak Republican\", \"Strong Republican\"]\n",
"plt.rcParams['figure.subplot.bottom'] = 0.23 # keep labels visible\n",
"plt.rcParams['figure.figsize'] = (6.0, 4.0) # make plot larger in notebook\n",
"age = [data.exog['age'][data.endog == id] for id in party_ID]\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"plot_opts={'cutoff_val':5, 'cutoff_type':'abs',\n",
" 'label_fontsize':'small',\n",
" 'label_rotation':30}\n",
"sm.graphics.beanplot(age, ax=ax, labels=labels,\n",
" plot_opts=plot_opts)\n",
"ax.set_xlabel(\"Party identification of respondent\")\n",
"ax.set_ylabel(\"Age\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# lmfit test (from http://nbviewer.ipython.org/github/lmfit/lmfit-py/blob/master/examples/lmfit-model.ipynb)\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"def decay(t, N, tau):\n",
" return N*np.exp(-t/tau)\n",
"t = np.linspace(0, 5, num=1000)\n",
"data = decay(t, 7, 3) + np.random.randn(*t.shape)\n",
"\n",
"from lmfit import Model\n",
"\n",
"model = Model(decay, independent_vars=['t'])\n",
"result = model.fit(data, t=t, N=10, tau=1)\n",
"plt.plot(t, data) # data\n",
"plt.plot(t, decay(t=t, **result.values), color='orange', linewidth=5) # best-fit model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## DataFrames: Pandas, Dask"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Pandas \n",
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"idx = pd.date_range('2000', '2005', freq='d', closed='left')\n",
"datas = pd.DataFrame({'Color': [ 'green' if x> 1 else 'red' for x in np.random.randn(len(idx))], \n",
" 'Measure': np.random.randn(len(idx)), 'Year': idx.year},\n",
" index=idx.date)\n",
"datas.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Split / Apply / Combine \n",
" Split your data into multiple independent groups.\n",
" Apply some function to each group.\n",
" Combine your groups back into a single data object.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"datas.query('Measure > 0').groupby(['Color','Year']).size().unstack()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Web Scraping: Beautifulsoup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# checking Web Scraping: beautifulsoup and requests \n",
"import requests\n",
"from bs4 import BeautifulSoup\n",
"\n",
"URL = 'http://en.wikipedia.org/wiki/Franklin,_Tennessee'\n",
"\n",
"req = requests.get(URL, headers={'User-Agent' : \"Mining the Social Web\"})\n",
"soup = BeautifulSoup(req.text, \"lxml\")\n",
"\n",
"geoTag = soup.find(True, 'geo')\n",
"\n",
"if geoTag and len(geoTag) > 1:\n",
" lat = geoTag.find(True, 'latitude').string\n",
" lon = geoTag.find(True, 'longitude').string\n",
" print ('Location is at', lat, lon)\n",
"elif geoTag and len(geoTag) == 1:\n",
" (lat, lon) = geoTag.string.split(';')\n",
" (lat, lon) = (lat.strip(), lon.strip())\n",
" print ('Location is at', lat, lon)\n",
"else:\n",
" print ('No location found')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Operations Research: Pulp"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# Pulp example : minimizing the weight to carry 99 pennies\n",
"# (from Philip I Thomas)\n",
"# see https://www.youtube.com/watch?v=UmMn-N5w-lI#t=995\n",
"# Import PuLP modeler functions\n",
"from pulp import *\n",
"# The prob variable is created to contain the problem data \n",
"prob = LpProblem(\"99 pennies Problem\",LpMinimize)\n",
"\n",
"# Variables represent how many of each coin we want to carry\n",
"pennies = LpVariable(\"Number of pennies\",0,None,LpInteger)\n",
"nickels = LpVariable(\"Number of nickels\",0,None,LpInteger)\n",
"dimes = LpVariable(\"Number of dimes\",0,None,LpInteger)\n",
"quarters = LpVariable(\"Number of quarters\",0,None,LpInteger)\n",
"\n",
"# The objective function is added to 'prob' first\n",
"\n",
"# we want to minimize (LpMinimize) this \n",
"prob += 2.5 * pennies + 5 * nickels + 2.268 * dimes + 5.670 * quarters, \"Total coins Weight\"\n",
"\n",
"# We want exactly 99 cents\n",
"prob += 1 * pennies + 5 * nickels + 10 * dimes + 25 * quarters == 99, \"\"\n",
"\n",
"# The problem data is written to an .lp file\n",
"prob.writeLP(\"99cents.lp\")\n",
"prob.solve()\n",
"\n",
"# print (\"status\",LpStatus[prob.status] )\n",
"print (\"Minimal Weight to carry exactly 99 pennies is %s grams\" % value(prob.objective))\n",
"# Each of the variables is printed with it's resolved optimum value\n",
"for v in prob.variables():\n",
" print (v.name, \"=\", v.varValue)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deep Learning: see tutorial-first-neural-network-python-keras"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Symbolic Calculation: sympy"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# checking sympy \n",
"import sympy\n",
"a, b =sympy.symbols('a b')\n",
"e=(a+b)**5\n",
"e.expand()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## SQL tools: sqlite, Ipython-sql, sqlite_bro, baresql, db.py"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# checking Ipython-sql, sqlparse, SQLalchemy\n",
"%load_ext sql"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%sql sqlite:///.baresql.db\n",
"DROP TABLE IF EXISTS writer;\n",
"CREATE TABLE writer (first_name, last_name, year_of_death);\n",
"INSERT INTO writer VALUES ('William', 'Shakespeare', 1616);\n",
"INSERT INTO writer VALUES ('Bertold', 'Brecht', 1956);\n",
"SELECT * , sqlite_version() as sqlite_version from Writer order by Year_of_death"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# checking baresql\n",
"from __future__ import print_function, unicode_literals, division # line needed only if Python2.7\n",
"from baresql import baresql\n",
"bsql = baresql.baresql(connection=\"sqlite:///.baresql.db\")\n",
"bsqldf = lambda q: bsql.df(q, dict(globals(),**locals()))\n",
"\n",
"users = ['Alexander', 'Billy', 'Charles', 'Danielle', 'Esmeralda', 'Franz', 'Greg']\n",
"# We use the python 'users' list like a SQL table\n",
"sql = \"select 'Welcome ' || c0 || ' !' as say_hello, length(c0) as name_length from users$$ where c0 like '%a%' \"\n",
"bsqldf(sql)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Transfering Datas to sqlite, doing transformation in sql, going back to Pandas and Matplotlib\n",
"bsqldf('''\n",
"select Color, Year, count(*) as size \n",
"from datas$$ \n",
"where Measure > 0 \n",
"group by Color, Year'''\n",
" ).set_index(['Year', 'Color']).unstack().plot(kind='bar')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# checking db.py\n",
"from db import DB\n",
"db=DB(dbtype=\"sqlite\", filename=\".baresql.db\")\n",
"db.query(\"select sqlite_version() as sqlite_version ;\") "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"db.tables"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# checking sqlite_bro: this should lanch a separate non-browser window with sqlite_bro's welcome\n",
"!cmd start cmd /C sqlite_bro"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# pyodbc \n",
"import pyodbc\n",
"\n",
"# look for pyodbc providers\n",
"sources = pyodbc.dataSources()\n",
"dsns = list(sources.keys())\n",
"sl = [' %s [%s]' % (dsn, sources[dsn]) for dsn in dsns]\n",
"print(\"pyodbc Providers: (beware 32/64 bit driver and python version must match)\\n\", '\\n'.join(sl))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# pythonnet\n",
"import clr\n",
"clr.AddReference(\"System.Data\")\n",
"clr.AddReference('System.Data.Common')\n",
"import System.Data.OleDb as ADONET\n",
"import System.Data.Odbc as ODBCNET\n",
"import System.Data.Common as DATACOM\n",
"\n",
"table = DATACOM.DbProviderFactories.GetFactoryClasses()\n",
"print(\"\\n .NET Providers: (beware 32/64 bit driver and python version must match)\")\n",
"for row in table.Rows:\n",
" print(\" %s\" % row[table.Columns[0]])\n",
" print(\" \",[row[column] for column in table.Columns if column != table.Columns[0]])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Qt libraries Demo\n",
"\n",
" \n",
"#### See [Dedicated Qt Libraries Demo](Qt_libraries_demo.ipynb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Wrap-up"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# optional scipy full test (takes up to 10 minutes)\n",
"#!cmd /C start cmd /k python.exe -c \"import scipy;scipy.test()\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip list"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7rc1"
},
"widgets": {
"state": {
"056d32c70f644417b86a152d3a2385bd": {
"views": [
{
"cell_index": 14
}
]
},
"2307e84bf81346d49818eef8862360ca": {
"views": [
{
"cell_index": 22
}
]
},
"4e7a6f5db8e74905a08d4636afa3b82f": {
"views": [
{
"cell_index": 15
}
]
},
"e762d7875083491eb2933958cc3331a9": {
"views": [
{
"cell_index": 21
}
]
}
},
"version": "1.2.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}