854 lines
27 KiB

6 years ago
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
"""
Python parse tree definitions.
This is a very concrete parse tree; we need to keep every token and
even the comments and whitespace between tokens.
There's also a pattern matching implementation here.
"""
__author__ = "Guido van Rossum <guido@python.org>"
import sys
from io import StringIO
HUGE = 0x7FFFFFFF # maximum repeat count, default max
_type_reprs = {}
def type_repr(type_num):
global _type_reprs
if not _type_reprs:
from .pygram import python_symbols
# printing tokens is possible but not as useful
# from .pgen2 import token // token.__dict__.items():
for name, val in python_symbols.__dict__.items():
if type(val) == int: _type_reprs[val] = name
return _type_reprs.setdefault(type_num, type_num)
class Base(object):
"""
Abstract base class for Node and Leaf.
This provides some default functionality and boilerplate using the
template pattern.
A node may be a subnode of at most one parent.
"""
# Default values for instance variables
type = None # int: token number (< 256) or symbol number (>= 256)
parent = None # Parent node pointer, or None
children = () # Tuple of subnodes
was_changed = False
was_checked = False
def __new__(cls, *args, **kwds):
"""Constructor that prevents Base from being instantiated."""
assert cls is not Base, "Cannot instantiate Base"
return object.__new__(cls)
def __eq__(self, other):
"""
Compare two nodes for equality.
This calls the method _eq().
"""
if self.__class__ is not other.__class__:
return NotImplemented
return self._eq(other)
__hash__ = None # For Py3 compatibility.
def _eq(self, other):
"""
Compare two nodes for equality.
This is called by __eq__ and __ne__. It is only called if the two nodes
have the same type. This must be implemented by the concrete subclass.
Nodes should be considered equal if they have the same structure,
ignoring the prefix string and other context information.
"""
raise NotImplementedError
def clone(self):
"""
Return a cloned (deep) copy of self.
This must be implemented by the concrete subclass.
"""
raise NotImplementedError
def post_order(self):
"""
Return a post-order iterator for the tree.
This must be implemented by the concrete subclass.
"""
raise NotImplementedError
def pre_order(self):
"""
Return a pre-order iterator for the tree.
This must be implemented by the concrete subclass.
"""
raise NotImplementedError
def replace(self, new):
"""Replace this node with a new one in the parent."""
assert self.parent is not None, str(self)
assert new is not None
if not isinstance(new, list):
new = [new]
l_children = []
found = False
for ch in self.parent.children:
if ch is self:
assert not found, (self.parent.children, self, new)
if new is not None:
l_children.extend(new)
found = True
else:
l_children.append(ch)
assert found, (self.children, self, new)
self.parent.changed()
self.parent.children = l_children
for x in new:
x.parent = self.parent
self.parent = None
def get_lineno(self):
"""Return the line number which generated the invocant node."""
node = self
while not isinstance(node, Leaf):
if not node.children:
return
node = node.children[0]
return node.lineno
def changed(self):
if self.parent:
self.parent.changed()
self.was_changed = True
def remove(self):
"""
Remove the node from the tree. Returns the position of the node in its
parent's children before it was removed.
"""
if self.parent:
for i, node in enumerate(self.parent.children):
if node is self:
self.parent.changed()
del self.parent.children[i]
self.parent = None
return i
@property
def next_sibling(self):
"""
The node immediately following the invocant in their parent's children
list. If the invocant does not have a next sibling, it is None
"""
if self.parent is None:
return None
# Can't use index(); we need to test by identity
for i, child in enumerate(self.parent.children):
if child is self:
try:
return self.parent.children[i+1]
except IndexError:
return None
@property
def prev_sibling(self):
"""
The node immediately preceding the invocant in their parent's children
list. If the invocant does not have a previous sibling, it is None.
"""
if self.parent is None:
return None
# Can't use index(); we need to test by identity
for i, child in enumerate(self.parent.children):
if child is self:
if i == 0:
return None
return self.parent.children[i-1]
def leaves(self):
for child in self.children:
yield from child.leaves()
def depth(self):
if self.parent is None:
return 0
return 1 + self.parent.depth()
def get_suffix(self):
"""
Return the string immediately following the invocant node. This is
effectively equivalent to node.next_sibling.prefix
"""
next_sib = self.next_sibling
if next_sib is None:
return ""
return next_sib.prefix
if sys.version_info < (3, 0):
def __str__(self):
return str(self).encode("ascii")
class Node(Base):
"""Concrete implementation for interior nodes."""
def __init__(self,type, children,
context=None,
prefix=None,
fixers_applied=None):
"""
Initializer.
Takes a type constant (a symbol number >= 256), a sequence of
child nodes, and an optional context keyword argument.
As a side effect, the parent pointers of the children are updated.
"""
assert type >= 256, type
self.type = type
self.children = list(children)
for ch in self.children:
assert ch.parent is None, repr(ch)
ch.parent = self
if prefix is not None:
self.prefix = prefix
if fixers_applied:
self.fixers_applied = fixers_applied[:]
else:
self.fixers_applied = None
def __repr__(self):
"""Return a canonical string representation."""
return "%s(%s, %r)" % (self.__class__.__name__,
type_repr(self.type),
self.children)
def __unicode__(self):
"""
Return a pretty string representation.
This reproduces the input source exactly.
"""
return "".join(map(str, self.children))
if sys.version_info > (3, 0):
__str__ = __unicode__
def _eq(self, other):
"""Compare two nodes for equality."""
return (self.type, self.children) == (other.type, other.children)
def clone(self):
"""Return a cloned (deep) copy of self."""
return Node(self.type, [ch.clone() for ch in self.children],
fixers_applied=self.fixers_applied)
def post_order(self):
"""Return a post-order iterator for the tree."""
for child in self.children:
yield from child.post_order()
yield self
def pre_order(self):
"""Return a pre-order iterator for the tree."""
yield self
for child in self.children:
yield from child.pre_order()
@property
def prefix(self):
"""
The whitespace and comments preceding this node in the input.
"""
if not self.children:
return ""
return self.children[0].prefix
@prefix.setter
def prefix(self, prefix):
if self.children:
self.children[0].prefix = prefix
def set_child(self, i, child):
"""
Equivalent to 'node.children[i] = child'. This method also sets the
child's parent attribute appropriately.
"""
child.parent = self
self.children[i].parent = None
self.children[i] = child
self.changed()
def insert_child(self, i, child):
"""
Equivalent to 'node.children.insert(i, child)'. This method also sets
the child's parent attribute appropriately.
"""
child.parent = self
self.children.insert(i, child)
self.changed()
def append_child(self, child):
"""
Equivalent to 'node.children.append(child)'. This method also sets the
child's parent attribute appropriately.
"""
child.parent = self
self.children.append(child)
self.changed()
class Leaf(Base):
"""Concrete implementation for leaf nodes."""
# Default values for instance variables
_prefix = "" # Whitespace and comments preceding this token in the input
lineno = 0 # Line where this token starts in the input
column = 0 # Column where this token tarts in the input
def __init__(self, type, value,
context=None,
prefix=None,
fixers_applied=[]):
"""
Initializer.
Takes a type constant (a token number < 256), a string value, and an
optional context keyword argument.
"""
assert 0 <= type < 256, type
if context is not None:
self._prefix, (self.lineno, self.column) = context
self.type = type
self.value = value
if prefix is not None:
self._prefix = prefix
self.fixers_applied = fixers_applied[:]
def __repr__(self):
"""Return a canonical string representation."""
return "%s(%r, %r)" % (self.__class__.__name__,
self.type,
self.value)
def __unicode__(self):
"""
Return a pretty string representation.
This reproduces the input source exactly.
"""
return self.prefix + str(self.value)
if sys.version_info > (3, 0):
__str__ = __unicode__
def _eq(self, other):
"""Compare two nodes for equality."""
return (self.type, self.value) == (other.type, other.value)
def clone(self):
"""Return a cloned (deep) copy of self."""
return Leaf(self.type, self.value,
(self.prefix, (self.lineno, self.column)),
fixers_applied=self.fixers_applied)
def leaves(self):
yield self
def post_order(self):
"""Return a post-order iterator for the tree."""
yield self
def pre_order(self):
"""Return a pre-order iterator for the tree."""
yield self
@property
def prefix(self):
"""
The whitespace and comments preceding this token in the input.
"""
return self._prefix
@prefix.setter
def prefix(self, prefix):
self.changed()
self._prefix = prefix
def convert(gr, raw_node):
"""
Convert raw node information to a Node or Leaf instance.
This is passed to the parser driver which calls it whenever a reduction of a
grammar rule produces a new complete node, so that the tree is build
strictly bottom-up.
"""
type, value, context, children = raw_node
if children or type in gr.number2symbol:
# If there's exactly one child, return that child instead of
# creating a new node.
if len(children) == 1:
return children[0]
return Node(type, children, context=context)
else:
return Leaf(type, value, context=context)
class BasePattern(object):
"""
A pattern is a tree matching pattern.
It looks for a specific node type (token or symbol), and
optionally for a specific content.
This is an abstract base class. There are three concrete
subclasses:
- LeafPattern matches a single leaf node;
- NodePattern matches a single node (usually non-leaf);
- WildcardPattern matches a sequence of nodes of variable length.
"""
# Defaults for instance variables
type = None # Node type (token if < 256, symbol if >= 256)
content = None # Optional content matching pattern
name = None # Optional name used to store match in results dict
def __new__(cls, *args, **kwds):
"""Constructor that prevents BasePattern from being instantiated."""
assert cls is not BasePattern, "Cannot instantiate BasePattern"
return object.__new__(cls)
def __repr__(self):
args = [type_repr(self.type), self.content, self.name]
while args and args[-1] is None:
del args[-1]
return "%s(%s)" % (self.__class__.__name__, ", ".join(map(repr, args)))
def optimize(self):
"""
A subclass can define this as a hook for optimizations.
Returns either self or another node with the same effect.
"""
return self
def match(self, node, results=None):
"""
Does this pattern exactly match a node?
Returns True if it matches, False if not.
If results is not None, it must be a dict which will be
updated with the nodes matching named subpatterns.
Default implementation for non-wildcard patterns.
"""
if self.type is not None and node.type != self.type:
return False
if self.content is not None:
r = None
if results is not None:
r = {}
if not self._submatch(node, r):
return False
if r:
results.update(r)
if results is not None and self.name:
results[self.name] = node
return True
def match_seq(self, nodes, results=None):
"""
Does this pattern exactly match a sequence of nodes?
Default implementation for non-wildcard patterns.
"""
if len(nodes) != 1:
return False
return self.match(nodes[0], results)
def generate_matches(self, nodes):
"""
Generator yielding all matches for this pattern.
Default implementation for non-wildcard patterns.
"""
r = {}
if nodes and self.match(nodes[0], r):
yield 1, r
class LeafPattern(BasePattern):
def __init__(self, type=None, content=None, name=None):
"""
Initializer. Takes optional type, content, and name.
The type, if given must be a token type (< 256). If not given,
this matches any *leaf* node; the content may still be required.
The content, if given, must be a string.
If a name is given, the matching node is stored in the results
dict under that key.
"""
if type is not None:
assert 0 <= type < 256, type
if content is not None:
assert isinstance(content, str), repr(content)
self.type = type
self.content = content
self.name = name
def match(self, node, results=None):
"""Override match() to insist on a leaf node."""
if not isinstance(node, Leaf):
return False
return BasePattern.match(self, node, results)
def _submatch(self, node, results=None):
"""
Match the pattern's content to the node's children.
This assumes the node type matches and self.content is not None.
Returns True if it matches, False if not.
If results is not None, it must be a dict which will be
updated with the nodes matching named subpatterns.
When returning False, the results dict may still be updated.
"""
return self.content == node.value
class NodePattern(BasePattern):
wildcards = False
def __init__(self, type=None, content=None, name=None):
"""
Initializer. Takes optional type, content, and name.
The type, if given, must be a symbol type (>= 256). If the
type is None this matches *any* single node (leaf or not),
except if content is not None, in which it only matches
non-leaf nodes that also match the content pattern.
The content, if not None, must be a sequence of Patterns that
must match the node's children exactly. If the content is
given, the type must not be None.
If a name is given, the matching node is stored in the results
dict under that key.
"""
if type is not None:
assert type >= 256, type
if content is not None:
assert not isinstance(content, str), repr(content)
content = list(content)
for i, item in enumerate(content):
assert isinstance(item, BasePattern), (i, item)
if isinstance(item, WildcardPattern):
self.wildcards = True
self.type = type
self.content = content
self.name = name
def _submatch(self, node, results=None):
"""
Match the pattern's content to the node's children.
This assumes the node type matches and self.content is not None.
Returns True if it matches, False if not.
If results is not None, it must be a dict which will be
updated with the nodes matching named subpatterns.
When returning False, the results dict may still be updated.
"""
if self.wildcards:
for c, r in generate_matches(self.content, node.children):
if c == len(node.children):
if results is not None:
results.update(r)
return True
return False
if len(self.content) != len(node.children):
return False
for subpattern, child in zip(self.content, node.children):
if not subpattern.match(child, results):
return False
return True
class WildcardPattern(BasePattern):
"""
A wildcard pattern can match zero or more nodes.
This has all the flexibility needed to implement patterns like:
.* .+ .? .{m,n}
(a b c | d e | f)
(...)* (...)+ (...)? (...){m,n}
except it always uses non-greedy matching.
"""
def __init__(self, content=None, min=0, max=HUGE, name=None):
"""
Initializer.
Args:
content: optional sequence of subsequences of patterns;
if absent, matches one node;
if present, each subsequence is an alternative [*]
min: optional minimum number of times to match, default 0
max: optional maximum number of times to match, default HUGE
name: optional name assigned to this match
[*] Thus, if content is [[a, b, c], [d, e], [f, g, h]] this is
equivalent to (a b c | d e | f g h); if content is None,
this is equivalent to '.' in regular expression terms.
The min and max parameters work as follows:
min=0, max=maxint: .*
min=1, max=maxint: .+
min=0, max=1: .?
min=1, max=1: .
If content is not None, replace the dot with the parenthesized
list of alternatives, e.g. (a b c | d e | f g h)*
"""
assert 0 <= min <= max <= HUGE, (min, max)
if content is not None:
content = tuple(map(tuple, content)) # Protect against alterations
# Check sanity of alternatives
assert len(content), repr(content) # Can't have zero alternatives
for alt in content:
assert len(alt), repr(alt) # Can have empty alternatives
self.content = content
self.min = min
self.max = max
self.name = name
def optimize(self):
"""Optimize certain stacked wildcard patterns."""
subpattern = None
if (self.content is not None and
len(self.content) == 1 and len(self.content[0]) == 1):
subpattern = self.content[0][0]
if self.min == 1 and self.max == 1:
if self.content is None:
return NodePattern(name=self.name)
if subpattern is not None and self.name == subpattern.name:
return subpattern.optimize()
if (self.min <= 1 and isinstance(subpattern, WildcardPattern) and
subpattern.min <= 1 and self.name == subpattern.name):
return WildcardPattern(subpattern.content,
self.min*subpattern.min,
self.max*subpattern.max,
subpattern.name)
return self
def match(self, node, results=None):
"""Does this pattern exactly match a node?"""
return self.match_seq([node], results)
def match_seq(self, nodes, results=None):
"""Does this pattern exactly match a sequence of nodes?"""
for c, r in self.generate_matches(nodes):
if c == len(nodes):
if results is not None:
results.update(r)
if self.name:
results[self.name] = list(nodes)
return True
return False
def generate_matches(self, nodes):
"""
Generator yielding matches for a sequence of nodes.
Args:
nodes: sequence of nodes
Yields:
(count, results) tuples where:
count: the match comprises nodes[:count];
results: dict containing named submatches.
"""
if self.content is None:
# Shortcut for special case (see __init__.__doc__)
for count in range(self.min, 1 + min(len(nodes), self.max)):
r = {}
if self.name:
r[self.name] = nodes[:count]
yield count, r
elif self.name == "bare_name":
yield self._bare_name_matches(nodes)
else:
# The reason for this is that hitting the recursion limit usually
# results in some ugly messages about how RuntimeErrors are being
# ignored. We only have to do this on CPython, though, because other
# implementations don't have this nasty bug in the first place.
if hasattr(sys, "getrefcount"):
save_stderr = sys.stderr
sys.stderr = StringIO()
try:
for count, r in self._recursive_matches(nodes, 0):
if self.name:
r[self.name] = nodes[:count]
yield count, r
except RuntimeError:
# We fall back to the iterative pattern matching scheme if the recursive
# scheme hits the recursion limit.
for count, r in self._iterative_matches(nodes):
if self.name:
r[self.name] = nodes[:count]
yield count, r
finally:
if hasattr(sys, "getrefcount"):
sys.stderr = save_stderr
def _iterative_matches(self, nodes):
"""Helper to iteratively yield the matches."""
nodelen = len(nodes)
if 0 >= self.min:
yield 0, {}
results = []
# generate matches that use just one alt from self.content
for alt in self.content:
for c, r in generate_matches(alt, nodes):
yield c, r
results.append((c, r))
# for each match, iterate down the nodes
while results:
new_results = []
for c0, r0 in results:
# stop if the entire set of nodes has been matched
if c0 < nodelen and c0 <= self.max:
for alt in self.content:
for c1, r1 in generate_matches(alt, nodes[c0:]):
if c1 > 0:
r = {}
r.update(r0)
r.update(r1)
yield c0 + c1, r
new_results.append((c0 + c1, r))
results = new_results
def _bare_name_matches(self, nodes):
"""Special optimized matcher for bare_name."""
count = 0
r = {}
done = False
max = len(nodes)
while not done and count < max:
done = True
for leaf in self.content:
if leaf[0].match(nodes[count], r):
count += 1
done = False
break
r[self.name] = nodes[:count]
return count, r
def _recursive_matches(self, nodes, count):
"""Helper to recursively yield the matches."""
assert self.content is not None
if count >= self.min:
yield 0, {}
if count < self.max:
for alt in self.content:
for c0, r0 in generate_matches(alt, nodes):
for c1, r1 in self._recursive_matches(nodes[c0:], count+1):
r = {}
r.update(r0)
r.update(r1)
yield c0 + c1, r
class NegatedPattern(BasePattern):
def __init__(self, content=None):
"""
Initializer.
The argument is either a pattern or None. If it is None, this
only matches an empty sequence (effectively '$' in regex
lingo). If it is not None, this matches whenever the argument
pattern doesn't have any matches.
"""
if content is not None:
assert isinstance(content, BasePattern), repr(content)
self.content = content
def match(self, node):
# We never match a node in its entirety
return False
def match_seq(self, nodes):
# We only match an empty sequence of nodes in its entirety
return len(nodes) == 0
def generate_matches(self, nodes):
if self.content is None:
# Return a match if there is an empty sequence
if len(nodes) == 0:
yield 0, {}
else:
# Return a match if the argument pattern has no matches
for c, r in self.content.generate_matches(nodes):
return
yield 0, {}
def generate_matches(patterns, nodes):
"""
Generator yielding matches for a sequence of patterns and nodes.
Args:
patterns: a sequence of patterns
nodes: a sequence of nodes
Yields:
(count, results) tuples where:
count: the entire sequence of patterns matches nodes[:count];
results: dict containing named submatches.
"""
if not patterns:
yield 0, {}
else:
p, rest = patterns[0], patterns[1:]
for c0, r0 in p.generate_matches(nodes):
if not rest:
yield c0, r0
else:
for c1, r1 in generate_matches(rest, nodes[c0:]):
r = {}
r.update(r0)
r.update(r1)
yield c0 + c1, r