\n",
"\n",
"A high-level, intuitive API for Deep Learning.\n",
"\n",
"Easy to define neural networks, then automatically handles execution.\n",
"\n",
"A simple, modular interface which allows focus on learning and enables fast experimentation"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"Goals\n",
"-----\n",
"\n",
"- General introduction to Deep Learning\n",
"- Overview of keras library\n",
"- An end-to-end example in keras "
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"Anti-Goals\n",
"-----\n",
"\n",
"- Understanding of Deep Learning (there will be no equations)\n",
"- Building neural networks from scratch\n",
"- Complete survey of keras library"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"Deep Learning 101\n",
"-----\n",
"
\n",
"\n",
"\"An open-source software library for Machine Intelligence\"\n",
"\n",
"Numerical computation using data flow graphs. "
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"TensorFlow: A great backend\n",
"------\n",
"A __very__ flexible architecture which allows you to do almost any numerical operation.\n",
"\n",
"Then deploy the computation to CPUs or GPUs (one or more) across desktop, cloud, or mobile device. \n",
"