
export highlights

October 21, 2015

1 Exporting the notebook

As suggested by @juhasch, it is interesting to keep the highlights when exporting the notebook to another
format. We give and explain below some possibilities:

1.1 Short version

• Html export:

jupyter nbconvert FILE --config JUPYTER_DATA_DIR/extensions/highlight_html_cfg.py

• LaTeX export:

jupyter nbconvert FILE --config JUPYTER_DATA_DIR/extensions/highlight_latex_cfg.py

where JUPYTER DATA DIR can be found from the output of

jupyter --paths

eg ~/.local/share/jupyter in my case. Seems to be c:\users\NAME\AppData\Roaming\jupyter
under Windows.

Examples can be found here: initial notebook, html version, pdf version (after an additional LaTeX →
pdf compilation).

1.2 Html export

This is quite easy. Actually, highlight formatting embedded in markdown cells is preserved while converting
with the standard

jupyter nbconvert file.ipynb

However, the css file is missing and must be added. Here we have several possibilities

• Embed the css within the notebook. For that, consider the last cell of the present notebook. This code
reads the css file highlighter.css in the extension directory and displays the corresponding style. So
doing the <style> ...</style> section will be present in the cell output and interpreted by the
web browser. Drawbacks of this solution is that user still have to execute this cell and that the this is
not language agnostic.

• Use a template file to link or include the css file during conversion. Such a file is provided as
templates/highlighter.tpl. It was choosen here to include the css content in the produced html
file rather than linking it. This avoids the necessity to keep the css file with the html files.

• This works directly if the css resides in the same directory as the file the user is attempting to convert
–thus requires the user to copy highlighter.css in the current directory. Then the conversion is
simply

1

tst_highlights.ipynb
tst_highlights.html


jupyter nbconvert file.ipynb --template highlighter

• It still remains two problems with this approach. First, it can be annoying to have to systematically
copy the css file in the current directory. Second, the data within the html tags is not converted (and
thus markdown remains unmodified). A solution is to use a pair of preprocessor/postprocessor that
modify the html tags and enable the subsequent markdown to html converter to operate on the included
data. Also, a config file is provided which redefines the template path to enable direct inclusion of the
css file in the extension directory. Unfortunately, it seems that the full path to the config file has to
be provided. This file resides in the extensions subdirectory of the jupyter data dir. The path can be
found by looking at the output of

jupyter --paths

Then the command to issue for converting the notebook to html is

jupyter nbconvert FILE --config JUPYTER_DATA_DIR/extensions/highlight_html_cfg.py

For instance

jupyter nbconvert tst_highlights.ipynb --config ~/.local/share/jupyter/extensions/highlight_html_cfg.py

1.3 LaTeX export

This is a bit more complicated since the direct conversion removes all html formatting present in markdown
cells. Thus use again a preprocessor which runs before the markdown → LaTeX conversion. In turn, it
appears that we also need to postprocess the result.

Three LaTeX commands, namely highlighta, highlightb, highlightc, and three environments highlightA,
highlightB, highlightC are defined. Highlighting html markup is then transformed into the corresponding
LaTeX commands and the text for completely highlighted cells is put in the adequate LaTeX environment.

Pre and PostProcessor classes are defined in the file pp highlighter.py located in the extensions direc-
tory. A LaTeX template, that includes the necessary packages and the definitions of commands/environments
is provides as highlighter.tplx in the template directory. The template inherits from article.ltx. For
more complex scenarios, typically if the latex template file has be customized, the user shall modify its
template or inherit from his base template rather than from article.

Finally, a config file fixes the different options for the conversion. Then the command to issue is simply

jupyter nbconvert FILE --config JUPYTER_DATA_DIR/extensions/highlight_latex_cfg.py

e.g.

jupyter nbconvert tst_highlights.ipynb --config ~/.local/share/jupyter/extensions/highlight_latex_cfg.py

1.4 Configuring paths

For those who do not have taken the extension from the IPython-notebook-extensions repository or have
not configured extensions via its setup.py utility, a file set paths.py is present in the extension directory (it
is merely a verbatim copy of the relevant parts in setup.py). This file configure the paths to the templates

and extension directories. It should be executed by something like

python3 set_paths.py

Additionaly, you may also have to execute mv paths.py if you installed from the original repo via jupyter

nbextension install ..

python3 mv_paths.py

2



1.5 Example for embedding the css within the notebook before conversion

>>> from IPython.core.display import display, HTML

... from jupyter_core.paths import jupyter_config_dir, jupyter_data_dir

... import os

... csspath=os.path.join(jupyter_data_dir(),’nbextensions’,’usability’,

... ’highlighter’,’highlighter.css’)

... HTML(’<style>’+open(csspath, "r").read()+’</style>’)

<IPython.core.display.HTML object>

3


	Exporting the notebook
	Short version
	Html export
	LaTeX export
	Configuring paths
	Example for embedding the css within the notebook before conversion


