from __future__ import absolute_import, division, print_function import functools import inspect import os import shutil import sys import tempfile import re from errno import ENOENT from contextlib import contextmanager from importlib import import_module from numbers import Integral from threading import Lock import uuid from weakref import WeakValueDictionary from .compatibility import (get_named_args, getargspec, PY3, unicode, bind_method, Iterator) from .core import get_deps from .optimization import key_split # noqa: F401 system_encoding = sys.getdefaultencoding() if system_encoding == 'ascii': system_encoding = 'utf-8' def deepmap(func, *seqs): """ Apply function inside nested lists >>> inc = lambda x: x + 1 >>> deepmap(inc, [[1, 2], [3, 4]]) [[2, 3], [4, 5]] >>> add = lambda x, y: x + y >>> deepmap(add, [[1, 2], [3, 4]], [[10, 20], [30, 40]]) [[11, 22], [33, 44]] """ if isinstance(seqs[0], (list, Iterator)): return [deepmap(func, *items) for items in zip(*seqs)] else: return func(*seqs) def homogeneous_deepmap(func, seq): if not seq: return seq n = 0 tmp = seq while isinstance(tmp, list): n += 1 tmp = tmp[0] return ndeepmap(n, func, seq) def ndeepmap(n, func, seq): """ Call a function on every element within a nested container >>> def inc(x): ... return x + 1 >>> L = [[1, 2], [3, 4, 5]] >>> ndeepmap(2, inc, L) [[2, 3], [4, 5, 6]] """ if n == 1: return [func(item) for item in seq] elif n > 1: return [ndeepmap(n - 1, func, item) for item in seq] elif isinstance(seq, list): return func(seq[0]) else: return func(seq) @contextmanager def ignoring(*exceptions): try: yield except exceptions: pass def import_required(mod_name, error_msg): """Attempt to import a required dependency. Raises a RuntimeError if the requested module is not available. """ try: return import_module(mod_name) except ImportError: raise RuntimeError(error_msg) @contextmanager def tmpfile(extension='', dir=None): extension = '.' + extension.lstrip('.') handle, filename = tempfile.mkstemp(extension, dir=dir) os.close(handle) os.remove(filename) try: yield filename finally: if os.path.exists(filename): if os.path.isdir(filename): shutil.rmtree(filename) else: with ignoring(OSError): os.remove(filename) @contextmanager def tmpdir(dir=None): dirname = tempfile.mkdtemp(dir=dir) try: yield dirname finally: if os.path.exists(dirname): if os.path.isdir(dirname): with ignoring(OSError): shutil.rmtree(dirname) else: with ignoring(OSError): os.remove(dirname) @contextmanager def filetext(text, extension='', open=open, mode='w'): with tmpfile(extension=extension) as filename: f = open(filename, mode=mode) try: f.write(text) finally: try: f.close() except AttributeError: pass yield filename @contextmanager def changed_cwd(new_cwd): old_cwd = os.getcwd() os.chdir(new_cwd) try: yield finally: os.chdir(old_cwd) @contextmanager def tmp_cwd(dir=None): with tmpdir(dir) as dirname: with changed_cwd(dirname): yield dirname @contextmanager def noop_context(): yield class IndexCallable(object): """ Provide getitem syntax for functions >>> def inc(x): ... return x + 1 >>> I = IndexCallable(inc) >>> I[3] 4 """ __slots__ = 'fn', def __init__(self, fn): self.fn = fn def __getitem__(self, key): return self.fn(key) @contextmanager def filetexts(d, open=open, mode='t', use_tmpdir=True): """ Dumps a number of textfiles to disk d - dict a mapping from filename to text like {'a.csv': '1,1\n2,2'} Since this is meant for use in tests, this context manager will automatically switch to a temporary current directory, to avoid race conditions when running tests in parallel. """ with (tmp_cwd() if use_tmpdir else noop_context()): for filename, text in d.items(): f = open(filename, 'w' + mode) try: f.write(text) finally: try: f.close() except AttributeError: pass yield list(d) for filename in d: if os.path.exists(filename): with ignoring(OSError): os.remove(filename) def concrete(seq): """ Make nested iterators concrete lists >>> data = [[1, 2], [3, 4]] >>> seq = iter(map(iter, data)) >>> concrete(seq) [[1, 2], [3, 4]] """ if isinstance(seq, Iterator): seq = list(seq) if isinstance(seq, (tuple, list)): seq = list(map(concrete, seq)) return seq def pseudorandom(n, p, random_state=None): """ Pseudorandom array of integer indexes >>> pseudorandom(5, [0.5, 0.5], random_state=123) array([1, 0, 0, 1, 1], dtype=int8) >>> pseudorandom(10, [0.5, 0.2, 0.2, 0.1], random_state=5) array([0, 2, 0, 3, 0, 1, 2, 1, 0, 0], dtype=int8) """ import numpy as np p = list(p) cp = np.cumsum([0] + p) assert np.allclose(1, cp[-1]) assert len(p) < 256 if not isinstance(random_state, np.random.RandomState): random_state = np.random.RandomState(random_state) x = random_state.random_sample(n) out = np.empty(n, dtype='i1') for i, (low, high) in enumerate(zip(cp[:-1], cp[1:])): out[(x >= low) & (x < high)] = i return out def random_state_data(n, random_state=None): """Return a list of arrays that can initialize ``np.random.RandomState``. Parameters ---------- n : int Number of arrays to return. random_state : int or np.random.RandomState, optional If an int, is used to seed a new ``RandomState``. """ import numpy as np if not all(hasattr(random_state, attr) for attr in ['normal', 'beta', 'bytes', 'uniform']): random_state = np.random.RandomState(random_state) random_data = random_state.bytes(624 * n * 4) # `n * 624` 32-bit integers l = list(np.frombuffer(random_data, dtype=np.uint32).reshape((n, -1))) assert len(l) == n return l def is_integer(i): """ >>> is_integer(6) True >>> is_integer(42.0) True >>> is_integer('abc') False """ return isinstance(i, Integral) or (isinstance(i, float) and i.is_integer()) ONE_ARITY_BUILTINS = set([abs, all, any, bool, bytearray, bytes, callable, chr, classmethod, complex, dict, dir, enumerate, eval, float, format, frozenset, hash, hex, id, int, iter, len, list, max, min, next, oct, open, ord, range, repr, reversed, round, set, slice, sorted, staticmethod, str, sum, tuple, type, vars, zip, memoryview]) if PY3: ONE_ARITY_BUILTINS.add(ascii) # noqa: F821 MULTI_ARITY_BUILTINS = set([compile, delattr, divmod, filter, getattr, hasattr, isinstance, issubclass, map, pow, setattr]) def takes_multiple_arguments(func, varargs=True): """ Does this function take multiple arguments? >>> def f(x, y): pass >>> takes_multiple_arguments(f) True >>> def f(x): pass >>> takes_multiple_arguments(f) False >>> def f(x, y=None): pass >>> takes_multiple_arguments(f) False >>> def f(*args): pass >>> takes_multiple_arguments(f) True >>> class Thing(object): ... def __init__(self, a): pass >>> takes_multiple_arguments(Thing) False """ if func in ONE_ARITY_BUILTINS: return False elif func in MULTI_ARITY_BUILTINS: return True try: spec = getargspec(func) except Exception: return False try: is_constructor = spec.args[0] == 'self' and isinstance(func, type) except Exception: is_constructor = False if varargs and spec.varargs: return True ndefaults = 0 if spec.defaults is None else len(spec.defaults) return len(spec.args) - ndefaults - is_constructor > 1 class Dispatch(object): """Simple single dispatch.""" def __init__(self, name=None): self._lookup = {} self._lazy = {} if name: self.__name__ = name def register(self, type, func=None): """Register dispatch of `func` on arguments of type `type`""" def wrapper(func): if isinstance(type, tuple): for t in type: self.register(t, func) else: self._lookup[type] = func return func return wrapper(func) if func is not None else wrapper def register_lazy(self, toplevel, func=None): """ Register a registration function which will be called if the *toplevel* module (e.g. 'pandas') is ever loaded. """ def wrapper(func): self._lazy[toplevel] = func return func return wrapper(func) if func is not None else wrapper def dispatch(self, cls): """Return the function implementation for the given ``cls``""" # Fast path with direct lookup on cls lk = self._lookup try: impl = lk[cls] except KeyError: pass else: return impl # Is a lazy registration function present? toplevel, _, _ = cls.__module__.partition('.') try: register = self._lazy.pop(toplevel) except KeyError: pass else: register() return self.dispatch(cls) # recurse # Walk the MRO and cache the lookup result for cls2 in inspect.getmro(cls)[1:]: if cls2 in lk: lk[cls] = lk[cls2] return lk[cls2] raise TypeError("No dispatch for {0}".format(cls)) def __call__(self, arg, *args, **kwargs): """ Call the corresponding method based on type of argument. """ meth = self.dispatch(type(arg)) return meth(arg, *args, **kwargs) @property def __doc__(self): try: func = self.dispatch(object) return func.__doc__ except TypeError: return "Single Dispatch for %s" % self.__name__ def ensure_not_exists(filename): """ Ensure that a file does not exist. """ try: os.unlink(filename) except OSError as e: if e.errno != ENOENT: raise def _skip_doctest(line): # NumPy docstring contains cursor and comment only example stripped = line.strip() if stripped == '>>>' or stripped.startswith('>>> #'): return stripped elif '>>>' in stripped and '+SKIP' not in stripped: if '# doctest:' in line: return line + ', +SKIP' else: return line + ' # doctest: +SKIP' else: return line def skip_doctest(doc): if doc is None: return '' return '\n'.join([_skip_doctest(line) for line in doc.split('\n')]) def extra_titles(doc): lines = doc.split('\n') titles = {i: lines[i].strip() for i in range(len(lines) - 1) if lines[i + 1] and all(c == '-' for c in lines[i + 1].strip())} seen = set() for i, title in sorted(titles.items()): if title in seen: new_title = 'Extra ' + title lines[i] = lines[i].replace(title, new_title) lines[i + 1] = lines[i + 1].replace('-' * len(title), '-' * len(new_title)) else: seen.add(title) return '\n'.join(lines) def derived_from(original_klass, version=None, ua_args=[]): """Decorator to attach original class's docstring to the wrapped method. Parameters ---------- original_klass: type Original class which the method is derived from version : str Original package version which supports the wrapped method ua_args : list List of keywords which Dask doesn't support. Keywords existing in original but not in Dask will automatically be added. """ def wrapper(method): method_name = method.__name__ try: # do not use wraps here, as it hides keyword arguments displayed # in the doc original_method = getattr(original_klass, method_name) doc = original_method.__doc__ if doc is None: doc = '' try: method_args = get_named_args(method) original_args = get_named_args(original_method) not_supported = [m for m in original_args if m not in method_args] except ValueError: not_supported = [] if len(ua_args) > 0: not_supported.extend(ua_args) if len(not_supported) > 0: note = ("\n Notes\n -----\n" " Dask doesn't support the following argument(s).\n\n") args = ''.join([' * {0}\n'.format(a) for a in not_supported]) doc = doc + note + args doc = skip_doctest(doc) doc = extra_titles(doc) method.__doc__ = doc return method except AttributeError: module_name = original_klass.__module__.split('.')[0] @functools.wraps(method) def wrapped(*args, **kwargs): msg = "Base package doesn't support '{0}'.".format(method_name) if version is not None: msg2 = " Use {0} {1} or later to use this method." msg += msg2.format(module_name, version) raise NotImplementedError(msg) return wrapped return wrapper def funcname(func): """Get the name of a function.""" # functools.partial if isinstance(func, functools.partial): return funcname(func.func) # methodcaller if isinstance(func, methodcaller): return func.method module_name = getattr(func, '__module__', None) or '' type_name = getattr(type(func), '__name__', None) or '' # toolz.curry if 'toolz' in module_name and 'curry' == type_name: return func.func_name # multipledispatch objects if 'multipledispatch' in module_name and 'Dispatcher' == type_name: return func.name # All other callables try: name = func.__name__ if name == '<lambda>': return 'lambda' return name except AttributeError: return str(func) def typename(typ): """ Return the name of a type Examples -------- >>> typename(int) 'int' >>> from dask.core import literal >>> typename(literal) 'dask.core.literal' """ if not typ.__module__ or typ.__module__ == 'builtins': return typ.__name__ else: return typ.__module__ + '.' + typ.__name__ def ensure_bytes(s): """ Turn string or bytes to bytes >>> ensure_bytes(u'123') b'123' >>> ensure_bytes('123') b'123' >>> ensure_bytes(b'123') b'123' """ if isinstance(s, bytes): return s if hasattr(s, 'encode'): return s.encode() msg = "Object %s is neither a bytes object nor has an encode method" raise TypeError(msg % s) def ensure_unicode(s): """ Turn string or bytes to bytes >>> ensure_unicode(u'123') '123' >>> ensure_unicode('123') '123' >>> ensure_unicode(b'123') '123' """ if isinstance(s, unicode): return s if hasattr(s, 'decode'): return s.decode() msg = "Object %s is neither a bytes object nor has an encode method" raise TypeError(msg % s) def digit(n, k, base): """ >>> digit(1234, 0, 10) 4 >>> digit(1234, 1, 10) 3 >>> digit(1234, 2, 10) 2 >>> digit(1234, 3, 10) 1 """ return n // base**k % base def insert(tup, loc, val): """ >>> insert(('a', 'b', 'c'), 0, 'x') ('x', 'b', 'c') """ L = list(tup) L[loc] = val return tuple(L) def dependency_depth(dsk): import toolz deps, _ = get_deps(dsk) @toolz.memoize def max_depth_by_deps(key): if not deps[key]: return 1 d = 1 + max(max_depth_by_deps(dep_key) for dep_key in deps[key]) return d return max(max_depth_by_deps(dep_key) for dep_key in deps.keys()) def memory_repr(num): for x in ['bytes', 'KB', 'MB', 'GB', 'TB']: if num < 1024.0: return "%3.1f %s" % (num, x) num /= 1024.0 def asciitable(columns, rows): """Formats an ascii table for given columns and rows. Parameters ---------- columns : list The column names rows : list of tuples The rows in the table. Each tuple must be the same length as ``columns``. """ rows = [tuple(str(i) for i in r) for r in rows] columns = tuple(str(i) for i in columns) widths = tuple(max(max(map(len, x)), len(c)) for x, c in zip(zip(*rows), columns)) row_template = ('|' + (' %%-%ds |' * len(columns))) % widths header = row_template % tuple(columns) bar = '+%s+' % '+'.join('-' * (w + 2) for w in widths) data = '\n'.join(row_template % r for r in rows) return '\n'.join([bar, header, bar, data, bar]) def put_lines(buf, lines): if any(not isinstance(x, unicode) for x in lines): lines = [unicode(x) for x in lines] buf.write('\n'.join(lines)) _method_cache = {} class methodcaller(object): """ Return a callable object that calls the given method on its operand. Unlike the builtin `operator.methodcaller`, instances of this class are serializable """ __slots__ = ('method',) func = property(lambda self: self.method) # For `funcname` to work def __new__(cls, method): if method in _method_cache: return _method_cache[method] self = object.__new__(cls) self.method = method _method_cache[method] = self return self def __call__(self, obj, *args, **kwargs): return getattr(obj, self.method)(*args, **kwargs) def __reduce__(self): return (methodcaller, (self.method,)) def __str__(self): return "<%s: %s>" % (self.__class__.__name__, self.method) __repr__ = __str__ class itemgetter(object): """ Return a callable object that gets an item from the operand Unlike the builtin `operator.itemgetter`, instances of this class are serializable """ __slots__ = ('index',) def __init__(self, index): self.index = index def __call__(self, x): return x[self.index] def __reduce__(self): return (itemgetter, (self.index,)) def __eq__(self, other): return type(self) is type(other) and self.index == other.index class MethodCache(object): """Attribute access on this object returns a methodcaller for that attribute. Examples -------- >>> a = [1, 3, 3] >>> M.count(a, 3) == a.count(3) True """ __getattr__ = staticmethod(methodcaller) __dir__ = lambda self: list(_method_cache) M = MethodCache() class SerializableLock(object): _locks = WeakValueDictionary() """ A Serializable per-process Lock This wraps a normal ``threading.Lock`` object and satisfies the same interface. However, this lock can also be serialized and sent to different processes. It will not block concurrent operations between processes (for this you should look at ``multiprocessing.Lock`` or ``locket.lock_file`` but will consistently deserialize into the same lock. So if we make a lock in one process:: lock = SerializableLock() And then send it over to another process multiple times:: bytes = pickle.dumps(lock) a = pickle.loads(bytes) b = pickle.loads(bytes) Then the deserialized objects will operate as though they were the same lock, and collide as appropriate. This is useful for consistently protecting resources on a per-process level. The creation of locks is itself not threadsafe. """ def __init__(self, token=None): self.token = token or str(uuid.uuid4()) if self.token in SerializableLock._locks: self.lock = SerializableLock._locks[self.token] else: self.lock = Lock() SerializableLock._locks[self.token] = self.lock def acquire(self, *args, **kwargs): return self.lock.acquire(*args, **kwargs) def release(self, *args, **kwargs): return self.lock.release(*args, **kwargs) def __enter__(self): self.lock.__enter__() def __exit__(self, *args): self.lock.__exit__(*args) def locked(self): return self.lock.locked() def __getstate__(self): return self.token def __setstate__(self, token): self.__init__(token) def __str__(self): return "<%s: %s>" % (self.__class__.__name__, self.token) __repr__ = __str__ def get_scheduler_lock(collection=None, scheduler=None): """Get an instance of the appropriate lock for a certain situation based on scheduler used.""" from . import multiprocessing from .base import get_scheduler actual_get = get_scheduler(collections=[collection], scheduler=scheduler) if actual_get == multiprocessing.get: return multiprocessing.get_context().Manager().Lock() return SerializableLock() def ensure_dict(d): if type(d) is dict: return d elif hasattr(d, 'dicts'): result = {} for dd in d.dicts.values(): result.update(dd) return result return dict(d) class OperatorMethodMixin(object): """A mixin for dynamically implementing operators""" @classmethod def _bind_operator(cls, op): """ bind operator to this class """ name = op.__name__ if name.endswith('_'): # for and_ and or_ name = name[:-1] elif name == 'inv': name = 'invert' meth = '__{0}__'.format(name) if name in ('abs', 'invert', 'neg', 'pos'): bind_method(cls, meth, cls._get_unary_operator(op)) else: bind_method(cls, meth, cls._get_binary_operator(op)) if name in ('eq', 'gt', 'ge', 'lt', 'le', 'ne', 'getitem'): return rmeth = '__r{0}__'.format(name) bind_method(cls, rmeth, cls._get_binary_operator(op, inv=True)) @classmethod def _get_unary_operator(cls, op): """ Must return a method used by unary operator """ raise NotImplementedError @classmethod def _get_binary_operator(cls, op, inv=False): """ Must return a method used by binary operator """ raise NotImplementedError def partial_by_order(*args, **kwargs): """ >>> from operator import add >>> partial_by_order(5, function=add, other=[(1, 10)]) 15 """ function = kwargs.pop('function') other = kwargs.pop('other') args2 = list(args) for i, arg in other: args2.insert(i, arg) return function(*args2, **kwargs) def is_arraylike(x): """ Is this object a numpy array or something similar? Examples -------- >>> import numpy as np >>> x = np.ones(5) >>> is_arraylike(x) True >>> is_arraylike(5) False >>> is_arraylike('cat') False """ from .base import is_dask_collection return ( hasattr(x, 'shape') and x.shape and hasattr(x, 'dtype') and not any(is_dask_collection(n) for n in x.shape) ) def natural_sort_key(s): """ Sorting `key` function for performing a natural sort on a collection of strings See https://en.wikipedia.org/wiki/Natural_sort_order Parameters ---------- s : str A string that is an element of the collection being sorted Returns ------- tuple[str or int] Tuple of the parts of the input string where each part is either a string or an integer Examples -------- >>> a = ['f0', 'f1', 'f2', 'f8', 'f9', 'f10', 'f11', 'f19', 'f20', 'f21'] >>> sorted(a) ['f0', 'f1', 'f10', 'f11', 'f19', 'f2', 'f20', 'f21', 'f8', 'f9'] >>> sorted(a, key=natural_sort_key) ['f0', 'f1', 'f2', 'f8', 'f9', 'f10', 'f11', 'f19', 'f20', 'f21'] """ return [int(part) if part.isdigit() else part for part in re.split(r'(\d+)', s)] def factors(n): """ Return the factors of an integer https://stackoverflow.com/a/6800214/616616 """ seq = ([i, n // i] for i in range(1, int(pow(n, 0.5) + 1)) if n % i == 0) return set(functools.reduce(list.__add__, seq)) def parse_bytes(s): """ Parse byte string to numbers >>> parse_bytes('100') 100 >>> parse_bytes('100 MB') 100000000 >>> parse_bytes('100M') 100000000 >>> parse_bytes('5kB') 5000 >>> parse_bytes('5.4 kB') 5400 >>> parse_bytes('1kiB') 1024 >>> parse_bytes('1e6') 1000000 >>> parse_bytes('1e6 kB') 1000000000 >>> parse_bytes('MB') 1000000 >>> parse_bytes('5 foos') # doctest: +SKIP ValueError: Could not interpret 'foos' as a byte unit """ s = s.replace(' ', '') if not s[0].isdigit(): s = '1' + s for i in range(len(s) - 1, -1, -1): if not s[i].isalpha(): break index = i + 1 prefix = s[:index] suffix = s[index:] try: n = float(prefix) except ValueError: raise ValueError("Could not interpret '%s' as a number" % prefix) try: multiplier = byte_sizes[suffix.lower()] except KeyError: raise ValueError("Could not interpret '%s' as a byte unit" % suffix) result = n * multiplier return int(result) byte_sizes = { 'kB': 10**3, 'MB': 10**6, 'GB': 10**9, 'TB': 10**12, 'PB': 10**15, 'KiB': 2**10, 'MiB': 2**20, 'GiB': 2**30, 'TiB': 2**40, 'PiB': 2**50, 'B': 1, '': 1, } byte_sizes = {k.lower(): v for k, v in byte_sizes.items()} byte_sizes.update({k[0]: v for k, v in byte_sizes.items() if k and 'i' not in k}) byte_sizes.update({k[:-1]: v for k, v in byte_sizes.items() if k and 'i' in k}) def has_keyword(func, keyword): try: if PY3: return keyword in inspect.signature(func).parameters else: if isinstance(func, functools.partial): return keyword in inspect.getargspec(func.func).args else: return keyword in inspect.getargspec(func).args except Exception: return False def ndimlist(seq): if not isinstance(seq, (list, tuple)): return 0 elif not seq: return 1 else: return 1 + ndimlist(seq[0])