You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ORPA-pyOpenRPA/WPy32-3720/python-3.7.2/Lib/site-packages/dask/dataframe/utils.py

806 lines
28 KiB

from __future__ import absolute_import, division, print_function
import re
import textwrap
from distutils.version import LooseVersion
import sys
import traceback
from contextlib import contextmanager
import numpy as np
import pandas as pd
import pandas.util.testing as tm
from pandas.api.types import (
is_categorical_dtype, is_scalar, is_sparse, is_period_dtype,
)
try:
from pandas.api.types import is_datetime64tz_dtype
except ImportError:
# pandas < 0.19.2
from pandas.core.common import is_datetime64tz_dtype
try:
from pandas.api.types import is_interval_dtype
except ImportError:
is_interval_dtype = lambda dtype: False
from .extensions import make_array_nonempty
from ..base import is_dask_collection
from ..compatibility import PY2, Iterator, Mapping
from ..core import get_deps
from ..local import get_sync
from ..utils import asciitable, is_arraylike, Dispatch
PANDAS_VERSION = LooseVersion(pd.__version__)
PANDAS_GT_0240 = PANDAS_VERSION >= LooseVersion("0.24.0rc1")
HAS_INT_NA = PANDAS_GT_0240
def is_integer_na_dtype(t):
dtype = getattr(t, 'dtype', t)
if HAS_INT_NA:
types = (
pd.Int8Dtype, pd.Int16Dtype, pd.Int32Dtype, pd.Int64Dtype,
pd.UInt8Dtype, pd.UInt16Dtype, pd.UInt32Dtype, pd.UInt64Dtype,
)
else:
types = ()
return isinstance(dtype, types)
def shard_df_on_index(df, divisions):
""" Shard a DataFrame by ranges on its index
Examples
--------
>>> df = pd.DataFrame({'a': [0, 10, 20, 30, 40], 'b': [5, 4 ,3, 2, 1]})
>>> df
a b
0 0 5
1 10 4
2 20 3
3 30 2
4 40 1
>>> shards = list(shard_df_on_index(df, [2, 4]))
>>> shards[0]
a b
0 0 5
1 10 4
>>> shards[1]
a b
2 20 3
3 30 2
>>> shards[2]
a b
4 40 1
>>> list(shard_df_on_index(df, []))[0] # empty case
a b
0 0 5
1 10 4
2 20 3
3 30 2
4 40 1
"""
if isinstance(divisions, Iterator):
divisions = list(divisions)
if not len(divisions):
yield df
else:
divisions = np.array(divisions)
df = df.sort_index()
index = df.index
if is_categorical_dtype(index):
index = index.as_ordered()
indices = index.searchsorted(divisions)
yield df.iloc[:indices[0]]
for i in range(len(indices) - 1):
yield df.iloc[indices[i]: indices[i + 1]]
yield df.iloc[indices[-1]:]
_META_TYPES = "meta : pd.DataFrame, pd.Series, dict, iterable, tuple, optional"
_META_DESCRIPTION = """\
An empty ``pd.DataFrame`` or ``pd.Series`` that matches the dtypes and
column names of the output. This metadata is necessary for many algorithms
in dask dataframe to work. For ease of use, some alternative inputs are
also available. Instead of a ``DataFrame``, a ``dict`` of ``{name: dtype}``
or iterable of ``(name, dtype)`` can be provided. Instead of a series, a
tuple of ``(name, dtype)`` can be used. If not provided, dask will try to
infer the metadata. This may lead to unexpected results, so providing
``meta`` is recommended. For more information, see
``dask.dataframe.utils.make_meta``.
"""
def insert_meta_param_description(*args, **kwargs):
"""Replace `$META` in docstring with param description.
If pad keyword is provided, will pad description by that number of
spaces (default is 8)."""
if not args:
return lambda f: insert_meta_param_description(f, **kwargs)
f = args[0]
indent = " " * kwargs.get('pad', 8)
body = textwrap.wrap(_META_DESCRIPTION, initial_indent=indent,
subsequent_indent=indent, width=78)
descr = '{0}\n{1}'.format(_META_TYPES, '\n'.join(body))
if f.__doc__:
if '$META' in f.__doc__:
f.__doc__ = f.__doc__.replace('$META', descr)
else:
# Put it at the end of the parameters section
parameter_header = 'Parameters\n%s----------' % indent[4:]
first, last = re.split('Parameters\\n[ ]*----------', f.__doc__)
parameters, rest = last.split('\n\n', 1)
f.__doc__ = '{0}{1}{2}\n{3}{4}\n\n{5}'.format(first, parameter_header,
parameters, indent[4:],
descr, rest)
return f
@contextmanager
def raise_on_meta_error(funcname=None, udf=False):
"""Reraise errors in this block to show metadata inference failure.
Parameters
----------
funcname : str, optional
If provided, will be added to the error message to indicate the
name of the method that failed.
"""
try:
yield
except Exception as e:
exc_type, exc_value, exc_traceback = sys.exc_info()
tb = ''.join(traceback.format_tb(exc_traceback))
msg = "Metadata inference failed{0}.\n\n"
if udf:
msg += ("You have supplied a custom function and Dask is unable to \n"
"determine the type of output that that function returns. \n\n"
"To resolve this please provide a meta= keyword.\n"
"The docstring of the Dask function you ran should have more information.\n\n")
msg += ("Original error is below:\n"
"------------------------\n"
"{1}\n\n"
"Traceback:\n"
"---------\n"
"{2}")
msg = msg.format(" in `{0}`".format(funcname) if funcname else "", repr(e), tb)
raise ValueError(msg)
UNKNOWN_CATEGORIES = '__UNKNOWN_CATEGORIES__'
def has_known_categories(x):
"""Returns whether the categories in `x` are known.
Parameters
----------
x : Series or CategoricalIndex
"""
x = getattr(x, '_meta', x)
if isinstance(x, pd.Series):
return UNKNOWN_CATEGORIES not in x.cat.categories
elif isinstance(x, pd.CategoricalIndex):
return UNKNOWN_CATEGORIES not in x.categories
raise TypeError("Expected Series or CategoricalIndex")
def strip_unknown_categories(x):
"""Replace any unknown categoricals with empty categoricals.
Useful for preventing ``UNKNOWN_CATEGORIES`` from leaking into results.
"""
if isinstance(x, (pd.Series, pd.DataFrame)):
x = x.copy()
if isinstance(x, pd.DataFrame):
cat_mask = x.dtypes == 'category'
if cat_mask.any():
cats = cat_mask[cat_mask].index
for c in cats:
if not has_known_categories(x[c]):
x[c].cat.set_categories([], inplace=True)
elif isinstance(x, pd.Series):
if is_categorical_dtype(x.dtype) and not has_known_categories(x):
x.cat.set_categories([], inplace=True)
if (isinstance(x.index, pd.CategoricalIndex) and not
has_known_categories(x.index)):
x.index = x.index.set_categories([])
elif isinstance(x, pd.CategoricalIndex) and not has_known_categories(x):
x = x.set_categories([])
return x
def clear_known_categories(x, cols=None, index=True):
"""Set categories to be unknown.
Parameters
----------
x : DataFrame, Series, Index
cols : iterable, optional
If x is a DataFrame, set only categoricals in these columns to unknown.
By default, all categorical columns are set to unknown categoricals
index : bool, optional
If True and x is a Series or DataFrame, set the clear known categories
in the index as well.
"""
if isinstance(x, (pd.Series, pd.DataFrame)):
x = x.copy()
if isinstance(x, pd.DataFrame):
mask = x.dtypes == 'category'
if cols is None:
cols = mask[mask].index
elif not mask.loc[cols].all():
raise ValueError("Not all columns are categoricals")
for c in cols:
x[c].cat.set_categories([UNKNOWN_CATEGORIES], inplace=True)
elif isinstance(x, pd.Series):
if is_categorical_dtype(x.dtype):
x.cat.set_categories([UNKNOWN_CATEGORIES], inplace=True)
if index and isinstance(x.index, pd.CategoricalIndex):
x.index = x.index.set_categories([UNKNOWN_CATEGORIES])
elif isinstance(x, pd.CategoricalIndex):
x = x.set_categories([UNKNOWN_CATEGORIES])
return x
def _empty_series(name, dtype, index=None):
if isinstance(dtype, str) and dtype == 'category':
return pd.Series(pd.Categorical([UNKNOWN_CATEGORIES]),
name=name, index=index).iloc[:0]
return pd.Series([], dtype=dtype, name=name, index=index)
make_meta = Dispatch('make_meta')
@make_meta.register((pd.Series, pd.DataFrame))
def make_meta_pandas(x, index=None):
return x.iloc[:0]
@make_meta.register(pd.Index)
def make_meta_index(x, index=None):
return x[0:0]
@make_meta.register(object)
def make_meta_object(x, index=None):
"""Create an empty pandas object containing the desired metadata.
Parameters
----------
x : dict, tuple, list, pd.Series, pd.DataFrame, pd.Index, dtype, scalar
To create a DataFrame, provide a `dict` mapping of `{name: dtype}`, or
an iterable of `(name, dtype)` tuples. To create a `Series`, provide a
tuple of `(name, dtype)`. If a pandas object, names, dtypes, and index
should match the desired output. If a dtype or scalar, a scalar of the
same dtype is returned.
index : pd.Index, optional
Any pandas index to use in the metadata. If none provided, a
`RangeIndex` will be used.
Examples
--------
>>> make_meta([('a', 'i8'), ('b', 'O')])
Empty DataFrame
Columns: [a, b]
Index: []
>>> make_meta(('a', 'f8'))
Series([], Name: a, dtype: float64)
>>> make_meta('i8')
1
"""
if hasattr(x, '_meta'):
return x._meta
elif is_arraylike(x):
return x[:0]
if index is not None:
index = make_meta(index)
if isinstance(x, dict):
return pd.DataFrame({c: _empty_series(c, d, index=index)
for (c, d) in x.items()}, index=index)
if isinstance(x, tuple) and len(x) == 2:
return _empty_series(x[0], x[1], index=index)
elif isinstance(x, (list, tuple)):
if not all(isinstance(i, tuple) and len(i) == 2 for i in x):
raise ValueError("Expected iterable of tuples of (name, dtype), "
"got {0}".format(x))
return pd.DataFrame({c: _empty_series(c, d, index=index) for (c, d) in x},
columns=[c for c, d in x], index=index)
elif not hasattr(x, 'dtype') and x is not None:
# could be a string, a dtype object, or a python type. Skip `None`,
# because it is implictly converted to `dtype('f8')`, which we don't
# want here.
try:
dtype = np.dtype(x)
return _scalar_from_dtype(dtype)
except Exception:
# Continue on to next check
pass
if is_scalar(x):
return _nonempty_scalar(x)
raise TypeError("Don't know how to create metadata from {0}".format(x))
if PANDAS_VERSION >= "0.20.0":
_numeric_index_types = (pd.Int64Index, pd.Float64Index, pd.UInt64Index)
else:
_numeric_index_types = (pd.Int64Index, pd.Float64Index)
meta_nonempty = Dispatch('meta_nonempty')
@meta_nonempty.register(object)
def meta_nonempty_object(x):
"""Create a nonempty pandas object from the given metadata.
Returns a pandas DataFrame, Series, or Index that contains two rows
of fake data.
"""
if is_scalar(x):
return _nonempty_scalar(x)
else:
raise TypeError("Expected Index, Series, DataFrame, or scalar, "
"got {0}".format(type(x).__name__))
@meta_nonempty.register(pd.DataFrame)
def meta_nonempty_dataframe(x):
idx = meta_nonempty(x.index)
data = {i: _nonempty_series(x.iloc[:, i], idx=idx)
for i, c in enumerate(x.columns)}
res = pd.DataFrame(data, index=idx,
columns=np.arange(len(x.columns)))
res.columns = x.columns
return res
@meta_nonempty.register(pd.Index)
def _nonempty_index(idx):
typ = type(idx)
if typ is pd.RangeIndex:
return pd.RangeIndex(2, name=idx.name)
elif typ in _numeric_index_types:
return typ([1, 2], name=idx.name)
elif typ is pd.Index:
return pd.Index(['a', 'b'], name=idx.name)
elif typ is pd.DatetimeIndex:
start = '1970-01-01'
# Need a non-monotonic decreasing index to avoid issues with
# partial string indexing see https://github.com/dask/dask/issues/2389
# and https://github.com/pandas-dev/pandas/issues/16515
# This doesn't mean `_meta_nonempty` should ever rely on
# `self.monotonic_increasing` or `self.monotonic_decreasing`
data = [start, '1970-01-02'] if idx.freq is None else None
return pd.DatetimeIndex(data, start=start, periods=2, freq=idx.freq,
tz=idx.tz, name=idx.name)
elif typ is pd.PeriodIndex:
return pd.period_range(start='1970-01-01', periods=2, freq=idx.freq,
name=idx.name)
elif typ is pd.TimedeltaIndex:
start = np.timedelta64(1, 'D')
data = [start, start + 1] if idx.freq is None else None
return pd.TimedeltaIndex(data, start=start, periods=2, freq=idx.freq,
name=idx.name)
elif typ is pd.CategoricalIndex:
if len(idx.categories) == 0:
data = pd.Categorical(_nonempty_index(idx.categories),
ordered=idx.ordered)
else:
data = pd.Categorical.from_codes(
[-1, 0], categories=idx.categories, ordered=idx.ordered)
return pd.CategoricalIndex(data, name=idx.name)
elif typ is pd.MultiIndex:
levels = [_nonempty_index(l) for l in idx.levels]
labels = [[0, 0] for i in idx.levels]
return pd.MultiIndex(levels=levels, labels=labels, names=idx.names)
raise TypeError("Don't know how to handle index of "
"type {0}".format(type(idx).__name__))
_simple_fake_mapping = {
'b': np.bool_(True),
'V': np.void(b' '),
'M': np.datetime64('1970-01-01'),
'm': np.timedelta64(1),
'S': np.str_('foo'),
'a': np.str_('foo'),
'U': np.unicode_('foo'),
'O': 'foo'
}
def _scalar_from_dtype(dtype):
if dtype.kind in ('i', 'f', 'u'):
return dtype.type(1)
elif dtype.kind == 'c':
return dtype.type(complex(1, 0))
elif dtype.kind in _simple_fake_mapping:
o = _simple_fake_mapping[dtype.kind]
return o.astype(dtype) if dtype.kind in ('m', 'M') else o
else:
raise TypeError("Can't handle dtype: {0}".format(dtype))
def _nonempty_scalar(x):
if isinstance(x, (pd.Timestamp, pd.Timedelta, pd.Period)):
return x
elif np.isscalar(x):
dtype = x.dtype if hasattr(x, 'dtype') else np.dtype(type(x))
return _scalar_from_dtype(dtype)
else:
raise TypeError("Can't handle meta of type "
"'{0}'".format(type(x).__name__))
@meta_nonempty.register(pd.Series)
def _nonempty_series(s, idx=None):
# TODO: Use register dtypes with make_array_nonempty
if idx is None:
idx = _nonempty_index(s.index)
dtype = s.dtype
if is_datetime64tz_dtype(dtype):
entry = pd.Timestamp('1970-01-01', tz=dtype.tz)
data = [entry, entry]
elif is_categorical_dtype(dtype):
if len(s.cat.categories):
data = [s.cat.categories[0]] * 2
cats = s.cat.categories
else:
data = _nonempty_index(s.cat.categories)
cats = None
data = pd.Categorical(data, categories=cats,
ordered=s.cat.ordered)
elif is_integer_na_dtype(dtype):
data = pd.array([1, None], dtype=dtype)
elif is_period_dtype(dtype):
# pandas 0.24.0+ should infer this to be Series[Period[freq]]
freq = dtype.freq
data = [pd.Period('2000', freq), pd.Period('2001', freq)]
elif is_sparse(dtype):
# TODO: pandas <0.24
# Pandas <= 0.23.4:
if PANDAS_GT_0240:
entry = _scalar_from_dtype(dtype.subtype)
else:
entry = _scalar_from_dtype(dtype.subtype)
data = pd.SparseArray([entry, entry], dtype=dtype)
elif is_interval_dtype(dtype):
entry = _scalar_from_dtype(dtype.subtype)
if PANDAS_GT_0240:
data = pd.array([entry, entry], dtype=dtype)
else:
data = np.array([entry, entry], dtype=dtype)
elif type(dtype) in make_array_nonempty._lookup:
data = make_array_nonempty(dtype)
else:
entry = _scalar_from_dtype(dtype)
data = np.array([entry, entry], dtype=dtype)
return pd.Series(data, name=s.name, index=idx)
def is_dataframe_like(df):
""" Looks like a Pandas DataFrame """
return set(dir(df)) > {'dtypes', 'columns', 'groupby', 'head'} and not isinstance(df, type)
def is_series_like(s):
""" Looks like a Pandas Series """
return set(dir(s)) > {'name', 'dtype', 'groupby', 'head'} and not isinstance(s, type)
def is_index_like(s):
""" Looks like a Pandas Index """
attrs = set(dir(s))
return attrs > {'name', 'dtype'} and 'head' not in attrs and not isinstance(s, type)
def check_meta(x, meta, funcname=None, numeric_equal=True):
"""Check that the dask metadata matches the result.
If metadata matches, ``x`` is passed through unchanged. A nice error is
raised if metadata doesn't match.
Parameters
----------
x : DataFrame, Series, or Index
meta : DataFrame, Series, or Index
The expected metadata that ``x`` should match
funcname : str, optional
The name of the function in which the metadata was specified. If
provided, the function name will be included in the error message to be
more helpful to users.
numeric_equal : bool, optionl
If True, integer and floating dtypes compare equal. This is useful due
to panda's implicit conversion of integer to floating upon encountering
missingness, which is hard to infer statically.
"""
eq_types = {'i', 'f', 'u'} if numeric_equal else set()
def equal_dtypes(a, b):
if is_categorical_dtype(a) != is_categorical_dtype(b):
return False
if isinstance(a, str) and a == '-' or isinstance(b, str) and b == '-':
return False
if is_categorical_dtype(a) and is_categorical_dtype(b):
# Pandas 0.21 CategoricalDtype compat
if (PANDAS_VERSION >= '0.21.0' and
(UNKNOWN_CATEGORIES in a.categories or
UNKNOWN_CATEGORIES in b.categories)):
return True
return a == b
return (a.kind in eq_types and b.kind in eq_types) or (a == b)
if (not (is_dataframe_like(meta) or is_series_like(meta) or is_index_like(meta))
or is_dask_collection(meta)):
raise TypeError("Expected partition to be DataFrame, Series, or "
"Index, got `%s`" % type(meta).__name__)
if type(x) != type(meta):
errmsg = ("Expected partition of type `%s` but got "
"`%s`" % (type(meta).__name__, type(x).__name__))
elif is_dataframe_like(meta):
kwargs = dict()
if PANDAS_VERSION >= LooseVersion('0.23.0'):
kwargs['sort'] = True
dtypes = pd.concat([x.dtypes, meta.dtypes], axis=1, **kwargs)
bad_dtypes = [(col, a, b) for col, a, b in dtypes.fillna('-').itertuples()
if not equal_dtypes(a, b)]
if bad_dtypes:
errmsg = ("Partition type: `%s`\n%s" %
(type(meta).__name__,
asciitable(['Column', 'Found', 'Expected'], bad_dtypes)))
elif not np.array_equal(np.nan_to_num(meta.columns),
np.nan_to_num(x.columns)):
errmsg = ("The columns in the computed data do not match"
" the columns in the provided metadata.\n"
" %s\n :%s" %
(meta.columns, x.columns))
else:
return x
else:
if equal_dtypes(x.dtype, meta.dtype):
return x
errmsg = ("Partition type: `%s`\n%s" %
(type(meta).__name__,
asciitable(['', 'dtype'], [('Found', x.dtype),
('Expected', meta.dtype)])))
raise ValueError("Metadata mismatch found%s.\n\n"
"%s" % ((" in `%s`" % funcname if funcname else ""),
errmsg))
def index_summary(idx, name=None):
"""Summarized representation of an Index.
"""
n = len(idx)
if name is None:
name = idx.__class__.__name__
if n:
head = idx[0]
tail = idx[-1]
summary = ', {} to {}'.format(head, tail)
else:
summary = ''
return "{}: {} entries{}".format(name, n, summary)
###############################################################
# Testing
###############################################################
def _check_dask(dsk, check_names=True, check_dtypes=True, result=None):
import dask.dataframe as dd
if hasattr(dsk, 'dask'):
if result is None:
result = dsk.compute(scheduler='sync')
if isinstance(dsk, dd.Index):
assert 'Index' in type(result).__name__, type(result)
# assert type(dsk._meta) == type(result), type(dsk._meta)
if check_names:
assert dsk.name == result.name
assert dsk._meta.name == result.name
if isinstance(result, pd.MultiIndex):
assert result.names == dsk._meta.names
if check_dtypes:
assert_dask_dtypes(dsk, result)
elif isinstance(dsk, dd.Series):
assert 'Series' in type(result).__name__, type(result)
assert type(dsk._meta) == type(result), type(dsk._meta)
if check_names:
assert dsk.name == result.name, (dsk.name, result.name)
assert dsk._meta.name == result.name
if check_dtypes:
assert_dask_dtypes(dsk, result)
_check_dask(dsk.index, check_names=check_names,
check_dtypes=check_dtypes, result=result.index)
elif isinstance(dsk, dd.DataFrame):
assert 'DataFrame' in type(result).__name__, type(result)
assert isinstance(dsk.columns, pd.Index), type(dsk.columns)
assert type(dsk._meta) == type(result), type(dsk._meta)
if check_names:
tm.assert_index_equal(dsk.columns, result.columns)
tm.assert_index_equal(dsk._meta.columns, result.columns)
if check_dtypes:
assert_dask_dtypes(dsk, result)
_check_dask(dsk.index, check_names=check_names,
check_dtypes=check_dtypes, result=result.index)
elif isinstance(dsk, dd.core.Scalar):
assert (np.isscalar(result) or
isinstance(result, (pd.Timestamp, pd.Timedelta)))
if check_dtypes:
assert_dask_dtypes(dsk, result)
else:
msg = 'Unsupported dask instance {0} found'.format(type(dsk))
raise AssertionError(msg)
return result
return dsk
def _maybe_sort(a):
# sort by value, then index
try:
if isinstance(a, pd.DataFrame):
if set(a.index.names) & set(a.columns):
a.index.names = ['-overlapped-index-name-%d' % i
for i in range(len(a.index.names))]
a = a.sort_values(by=a.columns.tolist())
else:
a = a.sort_values()
except (TypeError, IndexError, ValueError):
pass
return a.sort_index()
def assert_eq(a, b, check_names=True, check_dtypes=True,
check_divisions=True, check_index=True, **kwargs):
if check_divisions:
assert_divisions(a)
assert_divisions(b)
if hasattr(a, 'divisions') and hasattr(b, 'divisions'):
at = type(np.asarray(a.divisions).tolist()[0]) # numpy to python
bt = type(np.asarray(b.divisions).tolist()[0]) # scalar conversion
assert at == bt, (at, bt)
assert_sane_keynames(a)
assert_sane_keynames(b)
a = _check_dask(a, check_names=check_names, check_dtypes=check_dtypes)
b = _check_dask(b, check_names=check_names, check_dtypes=check_dtypes)
if not check_index:
a = a.reset_index(drop=True)
b = b.reset_index(drop=True)
if hasattr(a, 'to_pandas'):
a = a.to_pandas()
if hasattr(b, 'to_pandas'):
b = b.to_pandas()
if isinstance(a, pd.DataFrame):
a = _maybe_sort(a)
b = _maybe_sort(b)
tm.assert_frame_equal(a, b, **kwargs)
elif isinstance(a, pd.Series):
a = _maybe_sort(a)
b = _maybe_sort(b)
tm.assert_series_equal(a, b, check_names=check_names, **kwargs)
elif isinstance(a, pd.Index):
tm.assert_index_equal(a, b, **kwargs)
else:
if a == b:
return True
else:
if np.isnan(a):
assert np.isnan(b)
else:
assert np.allclose(a, b)
return True
def assert_dask_graph(dask, label):
if hasattr(dask, 'dask'):
dask = dask.dask
assert isinstance(dask, Mapping)
for k in dask:
if isinstance(k, tuple):
k = k[0]
if k.startswith(label):
return True
raise AssertionError("given dask graph doesn't contain label: {label}"
.format(label=label))
def assert_divisions(ddf):
if not hasattr(ddf, 'divisions'):
return
if not hasattr(ddf, 'index'):
return
if not ddf.known_divisions:
return
def index(x):
if isinstance(x, pd.Index):
return x
try:
return x.index.get_level_values(0)
except AttributeError:
return x.index
results = get_sync(ddf.dask, ddf.__dask_keys__())
for i, df in enumerate(results[:-1]):
if len(df):
assert index(df).min() >= ddf.divisions[i]
assert index(df).max() < ddf.divisions[i + 1]
if len(results[-1]):
assert index(results[-1]).min() >= ddf.divisions[-2]
assert index(results[-1]).max() <= ddf.divisions[-1]
def assert_sane_keynames(ddf):
if not hasattr(ddf, 'dask'):
return
for k in ddf.dask.keys():
while isinstance(k, tuple):
k = k[0]
assert isinstance(k, (str, bytes))
assert len(k) < 100
assert ' ' not in k
if not PY2:
assert k.split('-')[0].isidentifier()
def assert_dask_dtypes(ddf, res, numeric_equal=True):
"""Check that the dask metadata matches the result.
If `numeric_equal`, integer and floating dtypes compare equal. This is
useful due to the implicit conversion of integer to floating upon
encountering missingness, which is hard to infer statically."""
eq_types = {'O', 'S', 'U', 'a'} # treat object and strings alike
if numeric_equal:
eq_types.update(('i', 'f'))
if isinstance(res, pd.DataFrame):
for col, a, b in pd.concat([ddf._meta.dtypes, res.dtypes],
axis=1).itertuples():
assert (a.kind in eq_types and b.kind in eq_types) or (a == b)
elif isinstance(res, (pd.Series, pd.Index)):
a = ddf._meta.dtype
b = res.dtype
assert (a.kind in eq_types and b.kind in eq_types) or (a == b)
else:
if hasattr(ddf._meta, 'dtype'):
a = ddf._meta.dtype
if not hasattr(res, 'dtype'):
assert np.isscalar(res)
b = np.dtype(type(res))
else:
b = res.dtype
assert (a.kind in eq_types and b.kind in eq_types) or (a == b)
else:
assert type(ddf._meta) == type(res)
def assert_max_deps(x, n, eq=True):
dependencies, dependents = get_deps(x.dask)
if eq:
assert max(map(len, dependencies.values())) == n
else:
assert max(map(len, dependencies.values())) <= n