You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ORPA-pyOpenRPA/Resources/WPy64-3720/python-3.7.2.amd64/Lib/site-packages/pydub/pyaudioop.py

554 lines
13 KiB

try:
from __builtin__ import max as builtin_max
from __builtin__ import min as builtin_min
except ImportError:
from builtins import max as builtin_max
from builtins import min as builtin_min
import math
import struct
try:
from fractions import gcd
except ImportError: # Python 3.9+
from math import gcd
from ctypes import create_string_buffer
class error(Exception):
pass
def _check_size(size):
if size != 1 and size != 2 and size != 4:
raise error("Size should be 1, 2 or 4")
def _check_params(length, size):
_check_size(size)
if length % size != 0:
raise error("not a whole number of frames")
def _sample_count(cp, size):
return len(cp) / size
def _get_samples(cp, size, signed=True):
for i in range(_sample_count(cp, size)):
yield _get_sample(cp, size, i, signed)
def _struct_format(size, signed):
if size == 1:
return "b" if signed else "B"
elif size == 2:
return "h" if signed else "H"
elif size == 4:
return "i" if signed else "I"
def _get_sample(cp, size, i, signed=True):
fmt = _struct_format(size, signed)
start = i * size
end = start + size
return struct.unpack_from(fmt, buffer(cp)[start:end])[0]
def _put_sample(cp, size, i, val, signed=True):
fmt = _struct_format(size, signed)
struct.pack_into(fmt, cp, i * size, val)
def _get_maxval(size, signed=True):
if signed and size == 1:
return 0x7f
elif size == 1:
return 0xff
elif signed and size == 2:
return 0x7fff
elif size == 2:
return 0xffff
elif signed and size == 4:
return 0x7fffffff
elif size == 4:
return 0xffffffff
def _get_minval(size, signed=True):
if not signed:
return 0
elif size == 1:
return -0x80
elif size == 2:
return -0x8000
elif size == 4:
return -0x80000000
def _get_clipfn(size, signed=True):
maxval = _get_maxval(size, signed)
minval = _get_minval(size, signed)
return lambda val: builtin_max(min(val, maxval), minval)
def _overflow(val, size, signed=True):
minval = _get_minval(size, signed)
maxval = _get_maxval(size, signed)
if minval <= val <= maxval:
return val
bits = size * 8
if signed:
offset = 2**(bits-1)
return ((val + offset) % (2**bits)) - offset
else:
return val % (2**bits)
def getsample(cp, size, i):
_check_params(len(cp), size)
if not (0 <= i < len(cp) / size):
raise error("Index out of range")
return _get_sample(cp, size, i)
def max(cp, size):
_check_params(len(cp), size)
if len(cp) == 0:
return 0
return builtin_max(abs(sample) for sample in _get_samples(cp, size))
def minmax(cp, size):
_check_params(len(cp), size)
max_sample, min_sample = 0, 0
for sample in _get_samples(cp, size):
max_sample = builtin_max(sample, max_sample)
min_sample = builtin_min(sample, min_sample)
return min_sample, max_sample
def avg(cp, size):
_check_params(len(cp), size)
sample_count = _sample_count(cp, size)
if sample_count == 0:
return 0
return sum(_get_samples(cp, size)) / sample_count
def rms(cp, size):
_check_params(len(cp), size)
sample_count = _sample_count(cp, size)
if sample_count == 0:
return 0
sum_squares = sum(sample**2 for sample in _get_samples(cp, size))
return int(math.sqrt(sum_squares / sample_count))
def _sum2(cp1, cp2, length):
size = 2
total = 0
for i in range(length):
total += getsample(cp1, size, i) * getsample(cp2, size, i)
return total
def findfit(cp1, cp2):
size = 2
if len(cp1) % 2 != 0 or len(cp2) % 2 != 0:
raise error("Strings should be even-sized")
if len(cp1) < len(cp2):
raise error("First sample should be longer")
len1 = _sample_count(cp1, size)
len2 = _sample_count(cp2, size)
sum_ri_2 = _sum2(cp2, cp2, len2)
sum_aij_2 = _sum2(cp1, cp1, len2)
sum_aij_ri = _sum2(cp1, cp2, len2)
result = (sum_ri_2 * sum_aij_2 - sum_aij_ri * sum_aij_ri) / sum_aij_2
best_result = result
best_i = 0
for i in range(1, len1 - len2 + 1):
aj_m1 = _get_sample(cp1, size, i - 1)
aj_lm1 = _get_sample(cp1, size, i + len2 - 1)
sum_aij_2 += aj_lm1**2 - aj_m1**2
sum_aij_ri = _sum2(buffer(cp1)[i*size:], cp2, len2)
result = (sum_ri_2 * sum_aij_2 - sum_aij_ri * sum_aij_ri) / sum_aij_2
if result < best_result:
best_result = result
best_i = i
factor = _sum2(buffer(cp1)[best_i*size:], cp2, len2) / sum_ri_2
return best_i, factor
def findfactor(cp1, cp2):
size = 2
if len(cp1) % 2 != 0:
raise error("Strings should be even-sized")
if len(cp1) != len(cp2):
raise error("Samples should be same size")
sample_count = _sample_count(cp1, size)
sum_ri_2 = _sum2(cp2, cp2, sample_count)
sum_aij_ri = _sum2(cp1, cp2, sample_count)
return sum_aij_ri / sum_ri_2
def findmax(cp, len2):
size = 2
sample_count = _sample_count(cp, size)
if len(cp) % 2 != 0:
raise error("Strings should be even-sized")
if len2 < 0 or sample_count < len2:
raise error("Input sample should be longer")
if sample_count == 0:
return 0
result = _sum2(cp, cp, len2)
best_result = result
best_i = 0
for i in range(1, sample_count - len2 + 1):
sample_leaving_window = getsample(cp, size, i - 1)
sample_entering_window = getsample(cp, size, i + len2 - 1)
result -= sample_leaving_window**2
result += sample_entering_window**2
if result > best_result:
best_result = result
best_i = i
return best_i
def avgpp(cp, size):
_check_params(len(cp), size)
sample_count = _sample_count(cp, size)
prevextremevalid = False
prevextreme = None
avg = 0
nextreme = 0
prevval = getsample(cp, size, 0)
val = getsample(cp, size, 1)
prevdiff = val - prevval
for i in range(1, sample_count):
val = getsample(cp, size, i)
diff = val - prevval
if diff * prevdiff < 0:
if prevextremevalid:
avg += abs(prevval - prevextreme)
nextreme += 1
prevextremevalid = True
prevextreme = prevval
prevval = val
if diff != 0:
prevdiff = diff
if nextreme == 0:
return 0
return avg / nextreme
def maxpp(cp, size):
_check_params(len(cp), size)
sample_count = _sample_count(cp, size)
prevextremevalid = False
prevextreme = None
max = 0
prevval = getsample(cp, size, 0)
val = getsample(cp, size, 1)
prevdiff = val - prevval
for i in range(1, sample_count):
val = getsample(cp, size, i)
diff = val - prevval
if diff * prevdiff < 0:
if prevextremevalid:
extremediff = abs(prevval - prevextreme)
if extremediff > max:
max = extremediff
prevextremevalid = True
prevextreme = prevval
prevval = val
if diff != 0:
prevdiff = diff
return max
def cross(cp, size):
_check_params(len(cp), size)
crossings = 0
last_sample = 0
for sample in _get_samples(cp, size):
if sample <= 0 < last_sample or sample >= 0 > last_sample:
crossings += 1
last_sample = sample
return crossings
def mul(cp, size, factor):
_check_params(len(cp), size)
clip = _get_clipfn(size)
result = create_string_buffer(len(cp))
for i, sample in enumerate(_get_samples(cp, size)):
sample = clip(int(sample * factor))
_put_sample(result, size, i, sample)
return result.raw
def tomono(cp, size, fac1, fac2):
_check_params(len(cp), size)
clip = _get_clipfn(size)
sample_count = _sample_count(cp, size)
result = create_string_buffer(len(cp) / 2)
for i in range(0, sample_count, 2):
l_sample = getsample(cp, size, i)
r_sample = getsample(cp, size, i + 1)
sample = (l_sample * fac1) + (r_sample * fac2)
sample = clip(sample)
_put_sample(result, size, i / 2, sample)
return result.raw
def tostereo(cp, size, fac1, fac2):
_check_params(len(cp), size)
sample_count = _sample_count(cp, size)
result = create_string_buffer(len(cp) * 2)
clip = _get_clipfn(size)
for i in range(sample_count):
sample = _get_sample(cp, size, i)
l_sample = clip(sample * fac1)
r_sample = clip(sample * fac2)
_put_sample(result, size, i * 2, l_sample)
_put_sample(result, size, i * 2 + 1, r_sample)
return result.raw
def add(cp1, cp2, size):
_check_params(len(cp1), size)
if len(cp1) != len(cp2):
raise error("Lengths should be the same")
clip = _get_clipfn(size)
sample_count = _sample_count(cp1, size)
result = create_string_buffer(len(cp1))
for i in range(sample_count):
sample1 = getsample(cp1, size, i)
sample2 = getsample(cp2, size, i)
sample = clip(sample1 + sample2)
_put_sample(result, size, i, sample)
return result.raw
def bias(cp, size, bias):
_check_params(len(cp), size)
result = create_string_buffer(len(cp))
for i, sample in enumerate(_get_samples(cp, size)):
sample = _overflow(sample + bias, size)
_put_sample(result, size, i, sample)
return result.raw
def reverse(cp, size):
_check_params(len(cp), size)
sample_count = _sample_count(cp, size)
result = create_string_buffer(len(cp))
for i, sample in enumerate(_get_samples(cp, size)):
_put_sample(result, size, sample_count - i - 1, sample)
return result.raw
def lin2lin(cp, size, size2):
_check_params(len(cp), size)
_check_size(size2)
if size == size2:
return cp
new_len = (len(cp) / size) * size2
result = create_string_buffer(new_len)
for i in range(_sample_count(cp, size)):
sample = _get_sample(cp, size, i)
if size < size2:
sample = sample << (4 * size2 / size)
elif size > size2:
sample = sample >> (4 * size / size2)
sample = _overflow(sample, size2)
_put_sample(result, size2, i, sample)
return result.raw
def ratecv(cp, size, nchannels, inrate, outrate, state, weightA=1, weightB=0):
_check_params(len(cp), size)
if nchannels < 1:
raise error("# of channels should be >= 1")
bytes_per_frame = size * nchannels
frame_count = len(cp) / bytes_per_frame
if bytes_per_frame / nchannels != size:
raise OverflowError("width * nchannels too big for a C int")
if weightA < 1 or weightB < 0:
raise error("weightA should be >= 1, weightB should be >= 0")
if len(cp) % bytes_per_frame != 0:
raise error("not a whole number of frames")
if inrate <= 0 or outrate <= 0:
raise error("sampling rate not > 0")
d = gcd(inrate, outrate)
inrate /= d
outrate /= d
prev_i = [0] * nchannels
cur_i = [0] * nchannels
if state is None:
d = -outrate
else:
d, samps = state
if len(samps) != nchannels:
raise error("illegal state argument")
prev_i, cur_i = zip(*samps)
prev_i, cur_i = list(prev_i), list(cur_i)
q = frame_count / inrate
ceiling = (q + 1) * outrate
nbytes = ceiling * bytes_per_frame
result = create_string_buffer(nbytes)
samples = _get_samples(cp, size)
out_i = 0
while True:
while d < 0:
if frame_count == 0:
samps = zip(prev_i, cur_i)
retval = result.raw
# slice off extra bytes
trim_index = (out_i * bytes_per_frame) - len(retval)
retval = buffer(retval)[:trim_index]
return (retval, (d, tuple(samps)))
for chan in range(nchannels):
prev_i[chan] = cur_i[chan]
cur_i[chan] = samples.next()
cur_i[chan] = (
(weightA * cur_i[chan] + weightB * prev_i[chan])
/ (weightA + weightB)
)
frame_count -= 1
d += outrate
while d >= 0:
for chan in range(nchannels):
cur_o = (
(prev_i[chan] * d + cur_i[chan] * (outrate - d))
/ outrate
)
_put_sample(result, size, out_i, _overflow(cur_o, size))
out_i += 1
d -= inrate
def lin2ulaw(cp, size):
raise NotImplementedError()
def ulaw2lin(cp, size):
raise NotImplementedError()
def lin2alaw(cp, size):
raise NotImplementedError()
def alaw2lin(cp, size):
raise NotImplementedError()
def lin2adpcm(cp, size, state):
raise NotImplementedError()
def adpcm2lin(cp, size, state):
raise NotImplementedError()