You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
983 lines
25 KiB
983 lines
25 KiB
import itertools
|
|
import heapq
|
|
import collections
|
|
import operator
|
|
from functools import partial
|
|
from random import Random
|
|
from toolz.compatibility import (map, filterfalse, zip, zip_longest, iteritems,
|
|
filter)
|
|
from toolz.utils import no_default
|
|
|
|
|
|
__all__ = ('remove', 'accumulate', 'groupby', 'merge_sorted', 'interleave',
|
|
'unique', 'isiterable', 'isdistinct', 'take', 'drop', 'take_nth',
|
|
'first', 'second', 'nth', 'last', 'get', 'concat', 'concatv',
|
|
'mapcat', 'cons', 'interpose', 'frequencies', 'reduceby', 'iterate',
|
|
'sliding_window', 'partition', 'partition_all', 'count', 'pluck',
|
|
'join', 'tail', 'diff', 'topk', 'peek', 'random_sample')
|
|
|
|
|
|
def remove(predicate, seq):
|
|
""" Return those items of sequence for which predicate(item) is False
|
|
|
|
>>> def iseven(x):
|
|
... return x % 2 == 0
|
|
>>> list(remove(iseven, [1, 2, 3, 4]))
|
|
[1, 3]
|
|
"""
|
|
return filterfalse(predicate, seq)
|
|
|
|
|
|
def accumulate(binop, seq, initial=no_default):
|
|
""" Repeatedly apply binary function to a sequence, accumulating results
|
|
|
|
>>> from operator import add, mul
|
|
>>> list(accumulate(add, [1, 2, 3, 4, 5]))
|
|
[1, 3, 6, 10, 15]
|
|
>>> list(accumulate(mul, [1, 2, 3, 4, 5]))
|
|
[1, 2, 6, 24, 120]
|
|
|
|
Accumulate is similar to ``reduce`` and is good for making functions like
|
|
cumulative sum:
|
|
|
|
>>> from functools import partial, reduce
|
|
>>> sum = partial(reduce, add)
|
|
>>> cumsum = partial(accumulate, add)
|
|
|
|
Accumulate also takes an optional argument that will be used as the first
|
|
value. This is similar to reduce.
|
|
|
|
>>> list(accumulate(add, [1, 2, 3], -1))
|
|
[-1, 0, 2, 5]
|
|
>>> list(accumulate(add, [], 1))
|
|
[1]
|
|
|
|
See Also:
|
|
itertools.accumulate : In standard itertools for Python 3.2+
|
|
"""
|
|
seq = iter(seq)
|
|
result = next(seq) if initial == no_default else initial
|
|
yield result
|
|
for elem in seq:
|
|
result = binop(result, elem)
|
|
yield result
|
|
|
|
|
|
def groupby(key, seq):
|
|
""" Group a collection by a key function
|
|
|
|
>>> names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank']
|
|
>>> groupby(len, names) # doctest: +SKIP
|
|
{3: ['Bob', 'Dan'], 5: ['Alice', 'Edith', 'Frank'], 7: ['Charlie']}
|
|
|
|
>>> iseven = lambda x: x % 2 == 0
|
|
>>> groupby(iseven, [1, 2, 3, 4, 5, 6, 7, 8]) # doctest: +SKIP
|
|
{False: [1, 3, 5, 7], True: [2, 4, 6, 8]}
|
|
|
|
Non-callable keys imply grouping on a member.
|
|
|
|
>>> groupby('gender', [{'name': 'Alice', 'gender': 'F'},
|
|
... {'name': 'Bob', 'gender': 'M'},
|
|
... {'name': 'Charlie', 'gender': 'M'}]) # doctest:+SKIP
|
|
{'F': [{'gender': 'F', 'name': 'Alice'}],
|
|
'M': [{'gender': 'M', 'name': 'Bob'},
|
|
{'gender': 'M', 'name': 'Charlie'}]}
|
|
|
|
See Also:
|
|
countby
|
|
"""
|
|
if not callable(key):
|
|
key = getter(key)
|
|
d = collections.defaultdict(lambda: [].append)
|
|
for item in seq:
|
|
d[key(item)](item)
|
|
rv = {}
|
|
for k, v in iteritems(d):
|
|
rv[k] = v.__self__
|
|
return rv
|
|
|
|
|
|
def merge_sorted(*seqs, **kwargs):
|
|
""" Merge and sort a collection of sorted collections
|
|
|
|
This works lazily and only keeps one value from each iterable in memory.
|
|
|
|
>>> list(merge_sorted([1, 3, 5], [2, 4, 6]))
|
|
[1, 2, 3, 4, 5, 6]
|
|
|
|
>>> ''.join(merge_sorted('abc', 'abc', 'abc'))
|
|
'aaabbbccc'
|
|
|
|
The "key" function used to sort the input may be passed as a keyword.
|
|
|
|
>>> list(merge_sorted([2, 3], [1, 3], key=lambda x: x // 3))
|
|
[2, 1, 3, 3]
|
|
"""
|
|
if len(seqs) == 0:
|
|
return iter([])
|
|
elif len(seqs) == 1:
|
|
return iter(seqs[0])
|
|
|
|
key = kwargs.get('key', None)
|
|
if key is None:
|
|
return _merge_sorted_binary(seqs)
|
|
else:
|
|
return _merge_sorted_binary_key(seqs, key)
|
|
|
|
|
|
def _merge_sorted_binary(seqs):
|
|
mid = len(seqs) // 2
|
|
L1 = seqs[:mid]
|
|
if len(L1) == 1:
|
|
seq1 = iter(L1[0])
|
|
else:
|
|
seq1 = _merge_sorted_binary(L1)
|
|
L2 = seqs[mid:]
|
|
if len(L2) == 1:
|
|
seq2 = iter(L2[0])
|
|
else:
|
|
seq2 = _merge_sorted_binary(L2)
|
|
|
|
try:
|
|
val2 = next(seq2)
|
|
except StopIteration:
|
|
for val1 in seq1:
|
|
yield val1
|
|
return
|
|
|
|
for val1 in seq1:
|
|
if val2 < val1:
|
|
yield val2
|
|
for val2 in seq2:
|
|
if val2 < val1:
|
|
yield val2
|
|
else:
|
|
yield val1
|
|
break
|
|
else:
|
|
break
|
|
else:
|
|
yield val1
|
|
else:
|
|
yield val2
|
|
for val2 in seq2:
|
|
yield val2
|
|
return
|
|
yield val1
|
|
for val1 in seq1:
|
|
yield val1
|
|
|
|
|
|
def _merge_sorted_binary_key(seqs, key):
|
|
mid = len(seqs) // 2
|
|
L1 = seqs[:mid]
|
|
if len(L1) == 1:
|
|
seq1 = iter(L1[0])
|
|
else:
|
|
seq1 = _merge_sorted_binary_key(L1, key)
|
|
L2 = seqs[mid:]
|
|
if len(L2) == 1:
|
|
seq2 = iter(L2[0])
|
|
else:
|
|
seq2 = _merge_sorted_binary_key(L2, key)
|
|
|
|
try:
|
|
val2 = next(seq2)
|
|
except StopIteration:
|
|
for val1 in seq1:
|
|
yield val1
|
|
return
|
|
key2 = key(val2)
|
|
|
|
for val1 in seq1:
|
|
key1 = key(val1)
|
|
if key2 < key1:
|
|
yield val2
|
|
for val2 in seq2:
|
|
key2 = key(val2)
|
|
if key2 < key1:
|
|
yield val2
|
|
else:
|
|
yield val1
|
|
break
|
|
else:
|
|
break
|
|
else:
|
|
yield val1
|
|
else:
|
|
yield val2
|
|
for val2 in seq2:
|
|
yield val2
|
|
return
|
|
yield val1
|
|
for val1 in seq1:
|
|
yield val1
|
|
|
|
|
|
def interleave(seqs):
|
|
""" Interleave a sequence of sequences
|
|
|
|
>>> list(interleave([[1, 2], [3, 4]]))
|
|
[1, 3, 2, 4]
|
|
|
|
>>> ''.join(interleave(('ABC', 'XY')))
|
|
'AXBYC'
|
|
|
|
Both the individual sequences and the sequence of sequences may be infinite
|
|
|
|
Returns a lazy iterator
|
|
"""
|
|
iters = itertools.cycle(map(iter, seqs))
|
|
while True:
|
|
try:
|
|
for itr in iters:
|
|
yield next(itr)
|
|
return
|
|
except StopIteration:
|
|
predicate = partial(operator.is_not, itr)
|
|
iters = itertools.cycle(itertools.takewhile(predicate, iters))
|
|
|
|
|
|
def unique(seq, key=None):
|
|
""" Return only unique elements of a sequence
|
|
|
|
>>> tuple(unique((1, 2, 3)))
|
|
(1, 2, 3)
|
|
>>> tuple(unique((1, 2, 1, 3)))
|
|
(1, 2, 3)
|
|
|
|
Uniqueness can be defined by key keyword
|
|
|
|
>>> tuple(unique(['cat', 'mouse', 'dog', 'hen'], key=len))
|
|
('cat', 'mouse')
|
|
"""
|
|
seen = set()
|
|
seen_add = seen.add
|
|
if key is None:
|
|
for item in seq:
|
|
if item not in seen:
|
|
seen_add(item)
|
|
yield item
|
|
else: # calculate key
|
|
for item in seq:
|
|
val = key(item)
|
|
if val not in seen:
|
|
seen_add(val)
|
|
yield item
|
|
|
|
|
|
def isiterable(x):
|
|
""" Is x iterable?
|
|
|
|
>>> isiterable([1, 2, 3])
|
|
True
|
|
>>> isiterable('abc')
|
|
True
|
|
>>> isiterable(5)
|
|
False
|
|
"""
|
|
try:
|
|
iter(x)
|
|
return True
|
|
except TypeError:
|
|
return False
|
|
|
|
|
|
def isdistinct(seq):
|
|
""" All values in sequence are distinct
|
|
|
|
>>> isdistinct([1, 2, 3])
|
|
True
|
|
>>> isdistinct([1, 2, 1])
|
|
False
|
|
|
|
>>> isdistinct("Hello")
|
|
False
|
|
>>> isdistinct("World")
|
|
True
|
|
"""
|
|
if iter(seq) is seq:
|
|
seen = set()
|
|
seen_add = seen.add
|
|
for item in seq:
|
|
if item in seen:
|
|
return False
|
|
seen_add(item)
|
|
return True
|
|
else:
|
|
return len(seq) == len(set(seq))
|
|
|
|
|
|
def take(n, seq):
|
|
""" The first n elements of a sequence
|
|
|
|
>>> list(take(2, [10, 20, 30, 40, 50]))
|
|
[10, 20]
|
|
|
|
See Also:
|
|
drop
|
|
tail
|
|
"""
|
|
return itertools.islice(seq, n)
|
|
|
|
|
|
def tail(n, seq):
|
|
""" The last n elements of a sequence
|
|
|
|
>>> tail(2, [10, 20, 30, 40, 50])
|
|
[40, 50]
|
|
|
|
See Also:
|
|
drop
|
|
take
|
|
"""
|
|
try:
|
|
return seq[-n:]
|
|
except (TypeError, KeyError):
|
|
return tuple(collections.deque(seq, n))
|
|
|
|
|
|
def drop(n, seq):
|
|
""" The sequence following the first n elements
|
|
|
|
>>> list(drop(2, [10, 20, 30, 40, 50]))
|
|
[30, 40, 50]
|
|
|
|
See Also:
|
|
take
|
|
tail
|
|
"""
|
|
return itertools.islice(seq, n, None)
|
|
|
|
|
|
def take_nth(n, seq):
|
|
""" Every nth item in seq
|
|
|
|
>>> list(take_nth(2, [10, 20, 30, 40, 50]))
|
|
[10, 30, 50]
|
|
"""
|
|
return itertools.islice(seq, 0, None, n)
|
|
|
|
|
|
def first(seq):
|
|
""" The first element in a sequence
|
|
|
|
>>> first('ABC')
|
|
'A'
|
|
"""
|
|
return next(iter(seq))
|
|
|
|
|
|
def second(seq):
|
|
""" The second element in a sequence
|
|
|
|
>>> second('ABC')
|
|
'B'
|
|
"""
|
|
return next(itertools.islice(seq, 1, None))
|
|
|
|
|
|
def nth(n, seq):
|
|
""" The nth element in a sequence
|
|
|
|
>>> nth(1, 'ABC')
|
|
'B'
|
|
"""
|
|
if isinstance(seq, (tuple, list, collections.Sequence)):
|
|
return seq[n]
|
|
else:
|
|
return next(itertools.islice(seq, n, None))
|
|
|
|
|
|
def last(seq):
|
|
""" The last element in a sequence
|
|
|
|
>>> last('ABC')
|
|
'C'
|
|
"""
|
|
return tail(1, seq)[0]
|
|
|
|
|
|
rest = partial(drop, 1)
|
|
|
|
|
|
def _get(ind, seq, default):
|
|
try:
|
|
return seq[ind]
|
|
except (KeyError, IndexError):
|
|
return default
|
|
|
|
|
|
def get(ind, seq, default=no_default):
|
|
""" Get element in a sequence or dict
|
|
|
|
Provides standard indexing
|
|
|
|
>>> get(1, 'ABC') # Same as 'ABC'[1]
|
|
'B'
|
|
|
|
Pass a list to get multiple values
|
|
|
|
>>> get([1, 2], 'ABC') # ('ABC'[1], 'ABC'[2])
|
|
('B', 'C')
|
|
|
|
Works on any value that supports indexing/getitem
|
|
For example here we see that it works with dictionaries
|
|
|
|
>>> phonebook = {'Alice': '555-1234',
|
|
... 'Bob': '555-5678',
|
|
... 'Charlie':'555-9999'}
|
|
>>> get('Alice', phonebook)
|
|
'555-1234'
|
|
|
|
>>> get(['Alice', 'Bob'], phonebook)
|
|
('555-1234', '555-5678')
|
|
|
|
Provide a default for missing values
|
|
|
|
>>> get(['Alice', 'Dennis'], phonebook, None)
|
|
('555-1234', None)
|
|
|
|
See Also:
|
|
pluck
|
|
"""
|
|
try:
|
|
return seq[ind]
|
|
except TypeError: # `ind` may be a list
|
|
if isinstance(ind, list):
|
|
if default == no_default:
|
|
if len(ind) > 1:
|
|
return operator.itemgetter(*ind)(seq)
|
|
elif ind:
|
|
return (seq[ind[0]],)
|
|
else:
|
|
return ()
|
|
else:
|
|
return tuple(_get(i, seq, default) for i in ind)
|
|
elif default != no_default:
|
|
return default
|
|
else:
|
|
raise
|
|
except (KeyError, IndexError): # we know `ind` is not a list
|
|
if default == no_default:
|
|
raise
|
|
else:
|
|
return default
|
|
|
|
|
|
def concat(seqs):
|
|
""" Concatenate zero or more iterables, any of which may be infinite.
|
|
|
|
An infinite sequence will prevent the rest of the arguments from
|
|
being included.
|
|
|
|
We use chain.from_iterable rather than ``chain(*seqs)`` so that seqs
|
|
can be a generator.
|
|
|
|
>>> list(concat([[], [1], [2, 3]]))
|
|
[1, 2, 3]
|
|
|
|
See also:
|
|
itertools.chain.from_iterable equivalent
|
|
"""
|
|
return itertools.chain.from_iterable(seqs)
|
|
|
|
|
|
def concatv(*seqs):
|
|
""" Variadic version of concat
|
|
|
|
>>> list(concatv([], ["a"], ["b", "c"]))
|
|
['a', 'b', 'c']
|
|
|
|
See also:
|
|
itertools.chain
|
|
"""
|
|
return concat(seqs)
|
|
|
|
|
|
def mapcat(func, seqs):
|
|
""" Apply func to each sequence in seqs, concatenating results.
|
|
|
|
>>> list(mapcat(lambda s: [c.upper() for c in s],
|
|
... [["a", "b"], ["c", "d", "e"]]))
|
|
['A', 'B', 'C', 'D', 'E']
|
|
"""
|
|
return concat(map(func, seqs))
|
|
|
|
|
|
def cons(el, seq):
|
|
""" Add el to beginning of (possibly infinite) sequence seq.
|
|
|
|
>>> list(cons(1, [2, 3]))
|
|
[1, 2, 3]
|
|
"""
|
|
return itertools.chain([el], seq)
|
|
|
|
|
|
def interpose(el, seq):
|
|
""" Introduce element between each pair of elements in seq
|
|
|
|
>>> list(interpose("a", [1, 2, 3]))
|
|
[1, 'a', 2, 'a', 3]
|
|
"""
|
|
inposed = concat(zip(itertools.repeat(el), seq))
|
|
next(inposed)
|
|
return inposed
|
|
|
|
|
|
def frequencies(seq):
|
|
""" Find number of occurrences of each value in seq
|
|
|
|
>>> frequencies(['cat', 'cat', 'ox', 'pig', 'pig', 'cat']) #doctest: +SKIP
|
|
{'cat': 3, 'ox': 1, 'pig': 2}
|
|
|
|
See Also:
|
|
countby
|
|
groupby
|
|
"""
|
|
d = collections.defaultdict(int)
|
|
for item in seq:
|
|
d[item] += 1
|
|
return dict(d)
|
|
|
|
|
|
def reduceby(key, binop, seq, init=no_default):
|
|
""" Perform a simultaneous groupby and reduction
|
|
|
|
The computation:
|
|
|
|
>>> result = reduceby(key, binop, seq, init) # doctest: +SKIP
|
|
|
|
is equivalent to the following:
|
|
|
|
>>> def reduction(group): # doctest: +SKIP
|
|
... return reduce(binop, group, init) # doctest: +SKIP
|
|
|
|
>>> groups = groupby(key, seq) # doctest: +SKIP
|
|
>>> result = valmap(reduction, groups) # doctest: +SKIP
|
|
|
|
But the former does not build the intermediate groups, allowing it to
|
|
operate in much less space. This makes it suitable for larger datasets
|
|
that do not fit comfortably in memory
|
|
|
|
The ``init`` keyword argument is the default initialization of the
|
|
reduction. This can be either a constant value like ``0`` or a callable
|
|
like ``lambda : 0`` as might be used in ``defaultdict``.
|
|
|
|
Simple Examples
|
|
---------------
|
|
|
|
>>> from operator import add, mul
|
|
>>> iseven = lambda x: x % 2 == 0
|
|
|
|
>>> data = [1, 2, 3, 4, 5]
|
|
|
|
>>> reduceby(iseven, add, data) # doctest: +SKIP
|
|
{False: 9, True: 6}
|
|
|
|
>>> reduceby(iseven, mul, data) # doctest: +SKIP
|
|
{False: 15, True: 8}
|
|
|
|
Complex Example
|
|
---------------
|
|
|
|
>>> projects = [{'name': 'build roads', 'state': 'CA', 'cost': 1000000},
|
|
... {'name': 'fight crime', 'state': 'IL', 'cost': 100000},
|
|
... {'name': 'help farmers', 'state': 'IL', 'cost': 2000000},
|
|
... {'name': 'help farmers', 'state': 'CA', 'cost': 200000}]
|
|
|
|
>>> reduceby('state', # doctest: +SKIP
|
|
... lambda acc, x: acc + x['cost'],
|
|
... projects, 0)
|
|
{'CA': 1200000, 'IL': 2100000}
|
|
|
|
Example Using ``init``
|
|
----------------------
|
|
|
|
>>> def set_add(s, i):
|
|
... s.add(i)
|
|
... return s
|
|
|
|
>>> reduceby(iseven, set_add, [1, 2, 3, 4, 1, 2, 3], set) # doctest: +SKIP
|
|
{True: set([2, 4]),
|
|
False: set([1, 3])}
|
|
"""
|
|
is_no_default = init == no_default
|
|
if not is_no_default and not callable(init):
|
|
_init = init
|
|
init = lambda: _init
|
|
if not callable(key):
|
|
key = getter(key)
|
|
d = {}
|
|
for item in seq:
|
|
k = key(item)
|
|
if k not in d:
|
|
if is_no_default:
|
|
d[k] = item
|
|
continue
|
|
else:
|
|
d[k] = init()
|
|
d[k] = binop(d[k], item)
|
|
return d
|
|
|
|
|
|
def iterate(func, x):
|
|
""" Repeatedly apply a function func onto an original input
|
|
|
|
Yields x, then func(x), then func(func(x)), then func(func(func(x))), etc..
|
|
|
|
>>> def inc(x): return x + 1
|
|
>>> counter = iterate(inc, 0)
|
|
>>> next(counter)
|
|
0
|
|
>>> next(counter)
|
|
1
|
|
>>> next(counter)
|
|
2
|
|
|
|
>>> double = lambda x: x * 2
|
|
>>> powers_of_two = iterate(double, 1)
|
|
>>> next(powers_of_two)
|
|
1
|
|
>>> next(powers_of_two)
|
|
2
|
|
>>> next(powers_of_two)
|
|
4
|
|
>>> next(powers_of_two)
|
|
8
|
|
"""
|
|
while True:
|
|
yield x
|
|
x = func(x)
|
|
|
|
|
|
def sliding_window(n, seq):
|
|
""" A sequence of overlapping subsequences
|
|
|
|
>>> list(sliding_window(2, [1, 2, 3, 4]))
|
|
[(1, 2), (2, 3), (3, 4)]
|
|
|
|
This function creates a sliding window suitable for transformations like
|
|
sliding means / smoothing
|
|
|
|
>>> mean = lambda seq: float(sum(seq)) / len(seq)
|
|
>>> list(map(mean, sliding_window(2, [1, 2, 3, 4])))
|
|
[1.5, 2.5, 3.5]
|
|
"""
|
|
return zip(*(collections.deque(itertools.islice(it, i), 0) or it
|
|
for i, it in enumerate(itertools.tee(seq, n))))
|
|
|
|
|
|
no_pad = '__no__pad__'
|
|
|
|
|
|
def partition(n, seq, pad=no_pad):
|
|
""" Partition sequence into tuples of length n
|
|
|
|
>>> list(partition(2, [1, 2, 3, 4]))
|
|
[(1, 2), (3, 4)]
|
|
|
|
If the length of ``seq`` is not evenly divisible by ``n``, the final tuple
|
|
is dropped if ``pad`` is not specified, or filled to length ``n`` by pad:
|
|
|
|
>>> list(partition(2, [1, 2, 3, 4, 5]))
|
|
[(1, 2), (3, 4)]
|
|
|
|
>>> list(partition(2, [1, 2, 3, 4, 5], pad=None))
|
|
[(1, 2), (3, 4), (5, None)]
|
|
|
|
See Also:
|
|
partition_all
|
|
"""
|
|
args = [iter(seq)] * n
|
|
if pad is no_pad:
|
|
return zip(*args)
|
|
else:
|
|
return zip_longest(*args, fillvalue=pad)
|
|
|
|
|
|
def partition_all(n, seq):
|
|
""" Partition all elements of sequence into tuples of length at most n
|
|
|
|
The final tuple may be shorter to accommodate extra elements.
|
|
|
|
>>> list(partition_all(2, [1, 2, 3, 4]))
|
|
[(1, 2), (3, 4)]
|
|
|
|
>>> list(partition_all(2, [1, 2, 3, 4, 5]))
|
|
[(1, 2), (3, 4), (5,)]
|
|
|
|
See Also:
|
|
partition
|
|
"""
|
|
args = [iter(seq)] * n
|
|
it = zip_longest(*args, fillvalue=no_pad)
|
|
try:
|
|
prev = next(it)
|
|
except StopIteration:
|
|
return
|
|
for item in it:
|
|
yield prev
|
|
prev = item
|
|
if prev[-1] is no_pad:
|
|
yield prev[:prev.index(no_pad)]
|
|
else:
|
|
yield prev
|
|
|
|
|
|
def count(seq):
|
|
""" Count the number of items in seq
|
|
|
|
Like the builtin ``len`` but works on lazy sequencies.
|
|
|
|
Not to be confused with ``itertools.count``
|
|
|
|
See also:
|
|
len
|
|
"""
|
|
if hasattr(seq, '__len__'):
|
|
return len(seq)
|
|
return sum(1 for i in seq)
|
|
|
|
|
|
def pluck(ind, seqs, default=no_default):
|
|
""" plucks an element or several elements from each item in a sequence.
|
|
|
|
``pluck`` maps ``itertoolz.get`` over a sequence and returns one or more
|
|
elements of each item in the sequence.
|
|
|
|
This is equivalent to running `map(curried.get(ind), seqs)`
|
|
|
|
``ind`` can be either a single string/index or a list of strings/indices.
|
|
``seqs`` should be sequence containing sequences or dicts.
|
|
|
|
e.g.
|
|
|
|
>>> data = [{'id': 1, 'name': 'Cheese'}, {'id': 2, 'name': 'Pies'}]
|
|
>>> list(pluck('name', data))
|
|
['Cheese', 'Pies']
|
|
>>> list(pluck([0, 1], [[1, 2, 3], [4, 5, 7]]))
|
|
[(1, 2), (4, 5)]
|
|
|
|
See Also:
|
|
get
|
|
map
|
|
"""
|
|
if default == no_default:
|
|
get = getter(ind)
|
|
return map(get, seqs)
|
|
elif isinstance(ind, list):
|
|
return (tuple(_get(item, seq, default) for item in ind)
|
|
for seq in seqs)
|
|
return (_get(ind, seq, default) for seq in seqs)
|
|
|
|
|
|
def getter(index):
|
|
if isinstance(index, list):
|
|
if len(index) == 1:
|
|
index = index[0]
|
|
return lambda x: (x[index],)
|
|
elif index:
|
|
return operator.itemgetter(*index)
|
|
else:
|
|
return lambda x: ()
|
|
else:
|
|
return operator.itemgetter(index)
|
|
|
|
|
|
def join(leftkey, leftseq, rightkey, rightseq,
|
|
left_default=no_default, right_default=no_default):
|
|
""" Join two sequences on common attributes
|
|
|
|
This is a semi-streaming operation. The LEFT sequence is fully evaluated
|
|
and placed into memory. The RIGHT sequence is evaluated lazily and so can
|
|
be arbitrarily large.
|
|
|
|
>>> friends = [('Alice', 'Edith'),
|
|
... ('Alice', 'Zhao'),
|
|
... ('Edith', 'Alice'),
|
|
... ('Zhao', 'Alice'),
|
|
... ('Zhao', 'Edith')]
|
|
|
|
>>> cities = [('Alice', 'NYC'),
|
|
... ('Alice', 'Chicago'),
|
|
... ('Dan', 'Syndey'),
|
|
... ('Edith', 'Paris'),
|
|
... ('Edith', 'Berlin'),
|
|
... ('Zhao', 'Shanghai')]
|
|
|
|
>>> # Vacation opportunities
|
|
>>> # In what cities do people have friends?
|
|
>>> result = join(second, friends,
|
|
... first, cities)
|
|
>>> for ((a, b), (c, d)) in sorted(unique(result)):
|
|
... print((a, d))
|
|
('Alice', 'Berlin')
|
|
('Alice', 'Paris')
|
|
('Alice', 'Shanghai')
|
|
('Edith', 'Chicago')
|
|
('Edith', 'NYC')
|
|
('Zhao', 'Chicago')
|
|
('Zhao', 'NYC')
|
|
('Zhao', 'Berlin')
|
|
('Zhao', 'Paris')
|
|
|
|
Specify outer joins with keyword arguments ``left_default`` and/or
|
|
``right_default``. Here is a full outer join in which unmatched elements
|
|
are paired with None.
|
|
|
|
>>> identity = lambda x: x
|
|
>>> list(join(identity, [1, 2, 3],
|
|
... identity, [2, 3, 4],
|
|
... left_default=None, right_default=None))
|
|
[(2, 2), (3, 3), (None, 4), (1, None)]
|
|
|
|
Usually the key arguments are callables to be applied to the sequences. If
|
|
the keys are not obviously callable then it is assumed that indexing was
|
|
intended, e.g. the following is a legal change
|
|
|
|
>>> # result = join(second, friends, first, cities)
|
|
>>> result = join(1, friends, 0, cities) # doctest: +SKIP
|
|
"""
|
|
if not callable(leftkey):
|
|
leftkey = getter(leftkey)
|
|
if not callable(rightkey):
|
|
rightkey = getter(rightkey)
|
|
|
|
d = groupby(leftkey, leftseq)
|
|
seen_keys = set()
|
|
|
|
left_default_is_no_default = (left_default == no_default)
|
|
for item in rightseq:
|
|
key = rightkey(item)
|
|
seen_keys.add(key)
|
|
try:
|
|
left_matches = d[key]
|
|
for match in left_matches:
|
|
yield (match, item)
|
|
except KeyError:
|
|
if not left_default_is_no_default:
|
|
yield (left_default, item)
|
|
|
|
if right_default != no_default:
|
|
for key, matches in d.items():
|
|
if key not in seen_keys:
|
|
for match in matches:
|
|
yield (match, right_default)
|
|
|
|
|
|
def diff(*seqs, **kwargs):
|
|
""" Return those items that differ between sequences
|
|
|
|
>>> list(diff([1, 2, 3], [1, 2, 10, 100]))
|
|
[(3, 10)]
|
|
|
|
Shorter sequences may be padded with a ``default`` value:
|
|
|
|
>>> list(diff([1, 2, 3], [1, 2, 10, 100], default=None))
|
|
[(3, 10), (None, 100)]
|
|
|
|
A ``key`` function may also be applied to each item to use during
|
|
comparisons:
|
|
|
|
>>> list(diff(['apples', 'bananas'], ['Apples', 'Oranges'], key=str.lower))
|
|
[('bananas', 'Oranges')]
|
|
"""
|
|
N = len(seqs)
|
|
if N == 1 and isinstance(seqs[0], list):
|
|
seqs = seqs[0]
|
|
N = len(seqs)
|
|
if N < 2:
|
|
raise TypeError('Too few sequences given (min 2 required)')
|
|
default = kwargs.get('default', no_default)
|
|
if default == no_default:
|
|
iters = zip(*seqs)
|
|
else:
|
|
iters = zip_longest(*seqs, fillvalue=default)
|
|
key = kwargs.get('key', None)
|
|
if key is None:
|
|
for items in iters:
|
|
if items.count(items[0]) != N:
|
|
yield items
|
|
else:
|
|
for items in iters:
|
|
vals = tuple(map(key, items))
|
|
if vals.count(vals[0]) != N:
|
|
yield items
|
|
|
|
|
|
def topk(k, seq, key=None):
|
|
""" Find the k largest elements of a sequence
|
|
|
|
Operates lazily in ``n*log(k)`` time
|
|
|
|
>>> topk(2, [1, 100, 10, 1000])
|
|
(1000, 100)
|
|
|
|
Use a key function to change sorted order
|
|
|
|
>>> topk(2, ['Alice', 'Bob', 'Charlie', 'Dan'], key=len)
|
|
('Charlie', 'Alice')
|
|
|
|
See also:
|
|
heapq.nlargest
|
|
"""
|
|
if key is not None and not callable(key):
|
|
key = getter(key)
|
|
return tuple(heapq.nlargest(k, seq, key=key))
|
|
|
|
|
|
def peek(seq):
|
|
""" Retrieve the next element of a sequence
|
|
|
|
Returns the first element and an iterable equivalent to the original
|
|
sequence, still having the element retrieved.
|
|
|
|
>>> seq = [0, 1, 2, 3, 4]
|
|
>>> first, seq = peek(seq)
|
|
>>> first
|
|
0
|
|
>>> list(seq)
|
|
[0, 1, 2, 3, 4]
|
|
"""
|
|
iterator = iter(seq)
|
|
item = next(iterator)
|
|
return item, itertools.chain([item], iterator)
|
|
|
|
|
|
def random_sample(prob, seq, random_state=None):
|
|
""" Return elements from a sequence with probability of prob
|
|
|
|
Returns a lazy iterator of random items from seq.
|
|
|
|
``random_sample`` considers each item independently and without
|
|
replacement. See below how the first time it returned 13 items and the
|
|
next time it returned 6 items.
|
|
|
|
>>> seq = list(range(100))
|
|
>>> list(random_sample(0.1, seq)) # doctest: +SKIP
|
|
[6, 9, 19, 35, 45, 50, 58, 62, 68, 72, 78, 86, 95]
|
|
>>> list(random_sample(0.1, seq)) # doctest: +SKIP
|
|
[6, 44, 54, 61, 69, 94]
|
|
|
|
Providing an integer seed for ``random_state`` will result in
|
|
deterministic sampling. Given the same seed it will return the same sample
|
|
every time.
|
|
|
|
>>> list(random_sample(0.1, seq, random_state=2016))
|
|
[7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98]
|
|
>>> list(random_sample(0.1, seq, random_state=2016))
|
|
[7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98]
|
|
|
|
``random_state`` can also be any object with a method ``random`` that
|
|
returns floats between 0.0 and 1.0 (exclusive).
|
|
|
|
>>> from random import Random
|
|
>>> randobj = Random(2016)
|
|
>>> list(random_sample(0.1, seq, random_state=randobj))
|
|
[7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98]
|
|
"""
|
|
if not hasattr(random_state, 'random'):
|
|
random_state = Random(random_state)
|
|
return filter(lambda _: random_state.random() < prob, seq)
|