You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ORPA-pyOpenRPA/WPy32-3720/python-3.7.2/Lib/site-packages/dask/array/rechunk.py

647 lines
21 KiB

"""
The rechunk module defines:
intersect_chunks: a function for
converting chunks to new dimensions
rechunk: a function to convert the blocks
of an existing dask array to new chunks or blockshape
"""
from __future__ import absolute_import, division, print_function
import math
import heapq
from itertools import product, chain, count
from operator import getitem, add, mul, itemgetter
import numpy as np
import toolz
from toolz import accumulate, reduce
from ..base import tokenize
from ..highlevelgraph import HighLevelGraph
from ..utils import parse_bytes
from .core import concatenate3, Array, normalize_chunks
from .utils import validate_axis
from .wrap import empty
from .. import config
def cumdims_label(chunks, const):
""" Internal utility for cumulative sum with label.
>>> cumdims_label(((5, 3, 3), (2, 2, 1)), 'n') # doctest: +NORMALIZE_WHITESPACE
[(('n', 0), ('n', 5), ('n', 8), ('n', 11)),
(('n', 0), ('n', 2), ('n', 4), ('n', 5))]
"""
return [tuple(zip((const,) * (1 + len(bds)),
accumulate(add, (0,) + bds)))
for bds in chunks]
def _breakpoints(cumold, cumnew):
"""
>>> new = cumdims_label(((2, 3), (2, 2, 1)), 'n')
>>> old = cumdims_label(((2, 2, 1), (5,)), 'o')
>>> _breakpoints(new[0], old[0])
(('n', 0), ('o', 0), ('n', 2), ('o', 2), ('o', 4), ('n', 5), ('o', 5))
>>> _breakpoints(new[1], old[1])
(('n', 0), ('o', 0), ('n', 2), ('n', 4), ('n', 5), ('o', 5))
"""
return tuple(sorted(cumold + cumnew, key=itemgetter(1)))
def _intersect_1d(breaks):
"""
Internal utility to intersect chunks for 1d after preprocessing.
>>> new = cumdims_label(((2, 3), (2, 2, 1)), 'n')
>>> old = cumdims_label(((2, 2, 1), (5,)), 'o')
>>> _intersect_1d(_breakpoints(old[0], new[0])) # doctest: +NORMALIZE_WHITESPACE
[[(0, slice(0, 2, None))],
[(1, slice(0, 2, None)), (2, slice(0, 1, None))]]
>>> _intersect_1d(_breakpoints(old[1], new[1])) # doctest: +NORMALIZE_WHITESPACE
[[(0, slice(0, 2, None))],
[(0, slice(2, 4, None))],
[(0, slice(4, 5, None))]]
Parameters
----------
breaks: list of tuples
Each tuple is ('o', 8) or ('n', 8)
These are pairs of 'o' old or new 'n'
indicator with a corresponding cumulative sum.
Uses 'o' and 'n' to make new tuples of slices for
the new block crosswalk to old blocks.
"""
start = 0
last_end = 0
old_idx = 0
ret = []
ret_next = []
for idx in range(1, len(breaks)):
label, br = breaks[idx]
last_label, last_br = breaks[idx - 1]
if last_label == 'n':
if ret_next:
ret.append(ret_next)
ret_next = []
if last_label == 'o':
start = 0
else:
start = last_end
end = br - last_br + start
last_end = end
if br == last_br:
continue
ret_next.append((old_idx, slice(start, end)))
if label == 'o':
old_idx += 1
start = 0
if ret_next:
ret.append(ret_next)
return ret
def _old_to_new(old_chunks, new_chunks):
""" Helper to build old_chunks to new_chunks.
Handles missing values, as long as the missing dimension
is unchanged.
Examples
--------
>>> old = ((10, 10, 10, 10, 10), )
>>> new = ((25, 5, 20), )
>>> _old_to_new(old, new) # doctest: +NORMALIZE_WHITESPACE
[[[(0, slice(0, 10, None)), (1, slice(0, 10, None)), (2, slice(0, 5, None))],
[(2, slice(5, 10, None))],
[(3, slice(0, 10, None)), (4, slice(0, 10, None))]]]
"""
old_known = [x for x in old_chunks if not any(math.isnan(y) for y in x)]
new_known = [x for x in new_chunks if not any(math.isnan(y) for y in x)]
n_missing = [sum(math.isnan(y) for y in x) for x in old_chunks]
n_missing2 = [sum(math.isnan(y) for y in x) for x in new_chunks]
cmo = cumdims_label(old_known, 'o')
cmn = cumdims_label(new_known, 'n')
sums = [sum(o) for o in old_known]
sums2 = [sum(n) for n in new_known]
if not sums == sums2:
raise ValueError('Cannot change dimensions from %r to %r' % (sums, sums2))
if not n_missing == n_missing2:
raise ValueError('Chunks must be unchanging along unknown dimensions')
old_to_new = [_intersect_1d(_breakpoints(cm[0], cm[1])) for cm in zip(cmo, cmn)]
for idx, missing in enumerate(n_missing):
if missing:
# Missing dimensions are always unchanged, so old -> new is everything
extra = [[(i, slice(0, None))] for i in range(missing)]
old_to_new.insert(idx, extra)
return old_to_new
def intersect_chunks(old_chunks, new_chunks):
"""
Make dask.array slices as intersection of old and new chunks.
>>> intersections = intersect_chunks(((4, 4), (2,)),
... ((8,), (1, 1)))
>>> list(intersections) # doctest: +NORMALIZE_WHITESPACE
[(((0, slice(0, 4, None)), (0, slice(0, 1, None))),
((1, slice(0, 4, None)), (0, slice(0, 1, None)))),
(((0, slice(0, 4, None)), (0, slice(1, 2, None))),
((1, slice(0, 4, None)), (0, slice(1, 2, None))))]
Parameters
----------
old_chunks : iterable of tuples
block sizes along each dimension (convert from old_chunks)
new_chunks: iterable of tuples
block sizes along each dimension (converts to new_chunks)
"""
old_to_new = _old_to_new(old_chunks, new_chunks)
cross1 = product(*old_to_new)
cross = chain(tuple(product(*cr)) for cr in cross1)
return cross
def rechunk(x, chunks, threshold=None, block_size_limit=None):
"""
Convert blocks in dask array x for new chunks.
Parameters
----------
x: dask array
Array to be rechunked.
chunks: int, tuple or dict
The new block dimensions to create. -1 indicates the full size of the
corresponding dimension.
threshold: int
The graph growth factor under which we don't bother introducing an
intermediate step.
block_size_limit: int
The maximum block size (in bytes) we want to produce
Defaults to the configuration value ``array.chunk-size``
Examples
--------
>>> import dask.array as da
>>> x = da.ones((1000, 1000), chunks=(100, 100))
Specify uniform chunk sizes with a tuple
>>> y = x.rechunk((1000, 10))
Or chunk only specific dimensions with a dictionary
>>> y = x.rechunk({0: 1000})
Use the value ``-1`` to specify that you want a single chunk along a
dimension or the value ``"auto"`` to specify that dask can freely rechunk a
dimension to attain blocks of a uniform block size
>>> y = x.rechunk({0: -1, 1: 'auto'}, block_size_limit=1e8)
"""
if isinstance(chunks, dict):
chunks = {validate_axis(c, x.ndim): v for c, v in chunks.items()}
for i in range(x.ndim):
if i not in chunks:
chunks[i] = x.chunks[i]
if isinstance(chunks, (tuple, list)):
chunks = tuple(lc if lc is not None else rc
for lc, rc in zip(chunks, x.chunks))
chunks = normalize_chunks(chunks, x.shape, limit=block_size_limit,
dtype=x.dtype, previous_chunks=x.chunks)
if chunks == x.chunks:
return x
ndim = x.ndim
if not len(chunks) == ndim:
raise ValueError("Provided chunks are not consistent with shape")
new_shapes = tuple(map(sum, chunks))
for new, old in zip(new_shapes, x.shape):
if new != old and not math.isnan(old) and not math.isnan(new):
raise ValueError("Provided chunks are not consistent with shape")
steps = plan_rechunk(x.chunks, chunks, x.dtype.itemsize,
threshold, block_size_limit)
for c in steps:
x = _compute_rechunk(x, c)
return x
def _number_of_blocks(chunks):
return reduce(mul, map(len, chunks))
def _largest_block_size(chunks):
return reduce(mul, map(max, chunks))
def estimate_graph_size(old_chunks, new_chunks):
""" Estimate the graph size during a rechunk computation.
"""
# Estimate the number of intermediate blocks that will be produced
# (we don't use intersect_chunks() which is much more expensive)
crossed_size = reduce(mul, (len(oc) + len(nc)
for oc, nc in zip(old_chunks, new_chunks)))
return crossed_size
def divide_to_width(desired_chunks, max_width):
""" Minimally divide the given chunks so as to make the largest chunk
width less or equal than *max_width*.
"""
chunks = []
for c in desired_chunks:
nb_divides = int(np.ceil(c / max_width))
for i in range(nb_divides):
n = c // (nb_divides - i)
chunks.append(n)
c -= n
assert c == 0
return tuple(chunks)
def merge_to_number(desired_chunks, max_number):
""" Minimally merge the given chunks so as to drop the number of
chunks below *max_number*, while minimizing the largest width.
"""
if len(desired_chunks) <= max_number:
return desired_chunks
distinct = set(desired_chunks)
if len(distinct) == 1:
# Fast path for homogeneous target, also ensuring a regular result
w = distinct.pop()
n = len(desired_chunks)
total = n * w
desired_width = total // max_number
width = w * (desired_width // w)
adjust = (total - max_number * width) // w
return (width + w,) * adjust + (width,) * (max_number - adjust)
desired_width = sum(desired_chunks) // max_number
nmerges = len(desired_chunks) - max_number
heap = [(desired_chunks[i] + desired_chunks[i + 1], i, i + 1)
for i in range(len(desired_chunks) - 1)]
heapq.heapify(heap)
chunks = list(desired_chunks)
while nmerges > 0:
# Find smallest interval to merge
width, i, j = heapq.heappop(heap)
# If interval was made invalid by another merge, recompute
# it, re-insert it and retry.
if chunks[j] == 0:
j += 1
while chunks[j] == 0:
j += 1
heapq.heappush(heap, (chunks[i] + chunks[j], i, j))
continue
elif chunks[i] + chunks[j] != width:
heapq.heappush(heap, (chunks[i] + chunks[j], i, j))
continue
# Merge
assert chunks[i] != 0
chunks[i] = 0 # mark deleted
chunks[j] = width
nmerges -= 1
return tuple(filter(None, chunks))
def find_merge_rechunk(old_chunks, new_chunks, block_size_limit):
"""
Find an intermediate rechunk that would merge some adjacent blocks
together in order to get us nearer the *new_chunks* target, without
violating the *block_size_limit* (in number of elements).
"""
ndim = len(old_chunks)
old_largest_width = [max(c) for c in old_chunks]
new_largest_width = [max(c) for c in new_chunks]
graph_size_effect = {
dim: len(nc) / len(oc)
for dim, (oc, nc) in enumerate(zip(old_chunks, new_chunks))
}
block_size_effect = {
dim: new_largest_width[dim] / (old_largest_width[dim] or 1)
for dim in range(ndim)
}
# Our goal is to reduce the number of nodes in the rechunk graph
# by merging some adjacent chunks, so consider dimensions where we can
# reduce the # of chunks
merge_candidates = [dim for dim in range(ndim)
if graph_size_effect[dim] <= 1.0]
# Merging along each dimension reduces the graph size by a certain factor
# and increases memory largest block size by a certain factor.
# We want to optimize the graph size while staying below the given
# block_size_limit. This is in effect a knapsack problem, except with
# multiplicative values and weights. Just use a greedy algorithm
# by trying dimensions in decreasing value / weight order.
def key(k):
gse = graph_size_effect[k]
bse = block_size_effect[k]
if bse == 1:
bse = 1 + 1e-9
return (np.log(gse) / np.log(bse)) if bse > 0 else 0
sorted_candidates = sorted(merge_candidates, key=key)
largest_block_size = reduce(mul, old_largest_width)
chunks = list(old_chunks)
memory_limit_hit = False
for dim in sorted_candidates:
# Examine this dimension for possible graph reduction
new_largest_block_size = (
largest_block_size * new_largest_width[dim] // (old_largest_width[dim] or 1))
if new_largest_block_size <= block_size_limit:
# Full replacement by new chunks is possible
chunks[dim] = new_chunks[dim]
largest_block_size = new_largest_block_size
else:
# Try a partial rechunk, dividing the new chunks into
# smaller pieces
largest_width = old_largest_width[dim]
chunk_limit = int(block_size_limit * largest_width / largest_block_size)
c = divide_to_width(new_chunks[dim], chunk_limit)
if len(c) <= len(old_chunks[dim]):
# We manage to reduce the number of blocks, so do it
chunks[dim] = c
largest_block_size = largest_block_size * max(c) // largest_width
memory_limit_hit = True
assert largest_block_size == _largest_block_size(chunks)
assert largest_block_size <= block_size_limit
return tuple(chunks), memory_limit_hit
def find_split_rechunk(old_chunks, new_chunks, graph_size_limit):
"""
Find an intermediate rechunk that would split some chunks to
get us nearer *new_chunks*, without violating the *graph_size_limit*.
"""
ndim = len(old_chunks)
chunks = list(old_chunks)
for dim in range(ndim):
graph_size = estimate_graph_size(chunks, new_chunks)
if graph_size > graph_size_limit:
break
if len(old_chunks[dim]) > len(new_chunks[dim]):
# It's not interesting to split
continue
# Merge the new chunks so as to stay within the graph size budget
max_number = int(len(old_chunks[dim]) * graph_size_limit / graph_size)
c = merge_to_number(new_chunks[dim], max_number)
assert len(c) <= max_number
# Consider the merge successful if its result has a greater length
# and smaller max width than the old chunks
if len(c) >= len(old_chunks[dim]) and max(c) <= max(old_chunks[dim]):
chunks[dim] = c
return tuple(chunks)
def plan_rechunk(old_chunks, new_chunks, itemsize,
threshold=None,
block_size_limit=None):
""" Plan an iterative rechunking from *old_chunks* to *new_chunks*.
The plan aims to minimize the rechunk graph size.
Parameters
----------
itemsize: int
The item size of the array
threshold: int
The graph growth factor under which we don't bother
introducing an intermediate step
block_size_limit: int
The maximum block size (in bytes) we want to produce during an
intermediate step
Notes
-----
No intermediate steps will be planned if any dimension of ``old_chunks``
is unknown.
"""
threshold = threshold or config.get('array.rechunk-threshold')
block_size_limit = block_size_limit or config.get('array.chunk-size')
if isinstance(block_size_limit, str):
block_size_limit = parse_bytes(block_size_limit)
ndim = len(new_chunks)
steps = []
has_nans = [any(math.isnan(y) for y in x) for x in old_chunks]
if ndim <= 1 or not all(new_chunks) or any(has_nans):
# Trivial array / unknown dim => no need / ability for an intermediate
return steps + [new_chunks]
# Make it a number ef elements
block_size_limit /= itemsize
# Fix block_size_limit if too small for either old_chunks or new_chunks
largest_old_block = _largest_block_size(old_chunks)
largest_new_block = _largest_block_size(new_chunks)
block_size_limit = max([block_size_limit,
largest_old_block,
largest_new_block,
])
# The graph size above which to optimize
graph_size_threshold = threshold * (_number_of_blocks(old_chunks) +
_number_of_blocks(new_chunks))
current_chunks = old_chunks
first_pass = True
while True:
graph_size = estimate_graph_size(current_chunks, new_chunks)
if graph_size < graph_size_threshold:
break
if first_pass:
chunks = current_chunks
else:
# We hit the block_size_limit in a previous merge pass =>
# accept a significant increase in graph size in exchange for
# 1) getting nearer the goal 2) reducing the largest block size
# to make place for the following merge.
# To see this pass in action, make the block_size_limit very small.
chunks = find_split_rechunk(current_chunks, new_chunks,
graph_size * threshold)
chunks, memory_limit_hit = find_merge_rechunk(chunks, new_chunks,
block_size_limit)
if (chunks == current_chunks and not first_pass) or chunks == new_chunks:
break
steps.append(chunks)
current_chunks = chunks
if not memory_limit_hit:
break
first_pass = False
return steps + [new_chunks]
def _compute_rechunk(x, chunks):
""" Compute the rechunk of *x* to the given *chunks*.
"""
if x.size == 0:
# Special case for empty array, as the algorithm below does not behave correctly
return empty(x.shape, chunks=chunks, dtype=x.dtype)
ndim = x.ndim
crossed = intersect_chunks(x.chunks, chunks)
x2 = dict()
intermediates = dict()
token = tokenize(x, chunks)
merge_name = 'rechunk-merge-' + token
split_name = 'rechunk-split-' + token
split_name_suffixes = count()
# Pre-allocate old block references, to allow re-use and reduce the
# graph's memory footprint a bit.
old_blocks = np.empty([len(c) for c in x.chunks], dtype='O')
for index in np.ndindex(old_blocks.shape):
old_blocks[index] = (x.name,) + index
# Iterate over all new blocks
new_index = product(*(range(len(c)) for c in chunks))
for new_idx, cross1 in zip(new_index, crossed):
key = (merge_name,) + new_idx
old_block_indices = [[cr[i][0] for cr in cross1] for i in range(ndim)]
subdims1 = [len(set(old_block_indices[i]))
for i in range(ndim)]
rec_cat_arg = np.empty(subdims1, dtype='O')
rec_cat_arg_flat = rec_cat_arg.flat
# Iterate over the old blocks required to build the new block
for rec_cat_index, ind_slices in enumerate(cross1):
old_block_index, slices = zip(*ind_slices)
name = (split_name, next(split_name_suffixes))
old_index = old_blocks[old_block_index][1:]
if all(slc.start == 0 and slc.stop == x.chunks[i][ind]
for i, (slc, ind) in enumerate(zip(slices, old_index))):
rec_cat_arg_flat[rec_cat_index] = old_blocks[old_block_index]
else:
intermediates[name] = (getitem, old_blocks[old_block_index], slices)
rec_cat_arg_flat[rec_cat_index] = name
assert rec_cat_index == rec_cat_arg.size - 1
# New block is formed by concatenation of sliced old blocks
if all(d == 1 for d in rec_cat_arg.shape):
x2[key] = rec_cat_arg.flat[0]
else:
x2[key] = (concatenate3, rec_cat_arg.tolist())
del old_blocks, new_index
layer = toolz.merge(x2, intermediates)
graph = HighLevelGraph.from_collections(merge_name, layer, dependencies=[x])
return Array(graph, merge_name, chunks, dtype=x.dtype)
class _PrettyBlocks(object):
def __init__(self, blocks):
self.blocks = blocks
def __str__(self):
runs = []
run = []
repeats = 0
for c in self.blocks:
if run and run[-1] == c:
if repeats == 0 and len(run) > 1:
runs.append((None, run[:-1]))
run = run[-1:]
repeats += 1
else:
if repeats > 0:
assert len(run) == 1
runs.append((repeats + 1, run[-1]))
run = []
repeats = 0
run.append(c)
if run:
if repeats == 0:
runs.append((None, run))
else:
assert len(run) == 1
runs.append((repeats + 1, run[-1]))
parts = []
for repeats, run in runs:
if repeats is None:
parts.append(str(run))
else:
parts.append("%d*[%s]" % (repeats, run))
return " | ".join(parts)
__repr__ = __str__
def format_blocks(blocks):
"""
Pretty-format *blocks*.
>>> format_blocks((10, 10, 10))
3*[10]
>>> format_blocks((2, 3, 4))
[2, 3, 4]
>>> format_blocks((10, 10, 5, 6, 2, 2, 2, 7))
2*[10] | [5, 6] | 3*[2] | [7]
"""
assert (isinstance(blocks, tuple) and
all(isinstance(x, int) or math.isnan(x)
for x in blocks))
return _PrettyBlocks(blocks)
def format_chunks(chunks):
"""
>>> format_chunks((10 * (3,), 3 * (10,)))
(10*[3], 3*[10])
"""
assert isinstance(chunks, tuple)
return tuple(format_blocks(c) for c in chunks)
def format_plan(plan):
"""
>>> format_plan([((10, 10, 10), (15, 15)), ((30,), (10, 10, 10))])
[(3*[10], 2*[15]), ([30], 3*[10])]
"""
return [format_chunks(c) for c in plan]