You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ORPA-pyOpenRPA/WPy32-3720/python-3.7.2/Lib/site-packages/dask/array/reductions.py

888 lines
34 KiB

from __future__ import absolute_import, division, print_function
import operator
from functools import partial, wraps
from itertools import product, repeat
from math import factorial, log, ceil
import numpy as np
from numbers import Integral
from toolz import compose, partition_all, get, accumulate, pluck
from . import chunk
from .core import _concatenate2, Array, handle_out
from .blockwise import blockwise
from ..blockwise import lol_tuples
from .creation import arange
from .ufunc import sqrt
from .utils import validate_axis
from .wrap import zeros, ones
from .numpy_compat import ma_divide, divide as np_divide
from ..compatibility import getargspec, builtins
from ..base import tokenize
from ..highlevelgraph import HighLevelGraph
from ..utils import ignoring, funcname, Dispatch, deepmap
from .. import config
# Generic functions to support chunks of different types
empty_lookup = Dispatch('empty')
empty_lookup.register((object, np.ndarray), np.empty)
empty_lookup.register(np.ma.masked_array, np.ma.empty)
divide_lookup = Dispatch('divide')
divide_lookup.register((object, np.ndarray), np_divide)
divide_lookup.register(np.ma.masked_array, ma_divide)
def divide(a, b, dtype=None):
key = lambda x: getattr(x, '__array_priority__', float('-inf'))
f = divide_lookup.dispatch(type(builtins.max(a, b, key=key)))
return f(a, b, dtype=dtype)
def reduction(x, chunk, aggregate, axis=None, keepdims=False, dtype=None,
split_every=None, combine=None, name=None, out=None,
concatenate=True, output_size=1):
""" General version of reductions
Parameters
----------
x: Array
Data being reduced along one or more axes
chunk: callable(x_chunk, axis, keepdims)
First function to be executed when resolving the dask graph.
This function is applied in parallel to all original chunks of x.
See below for function parameters.
combine: callable(x_chunk, axis, keepdims), optional
Function used for intermediate recursive aggregation (see
split_every below). If omitted, it defaults to aggregate.
If the reduction can be performed in less than 3 steps, it will not
be invoked at all.
aggregate: callable(x_chunk, axis, keepdims)
Last function to be executed when resolving the dask graph,
producing the final output. It is always invoked, even when the reduced
Array counts a single chunk along the reduced axes.
axis: int or sequence of ints, optional
Axis or axes to aggregate upon. If omitted, aggregate along all axes.
keepdims: boolean, optional
Whether the reduction function should preserve the reduced axes,
leaving them at size ``output_size``, or remove them.
dtype: np.dtype, optional
Force output dtype. Defaults to x.dtype if omitted.
split_every: int >= 2 or dict(axis: int), optional
Determines the depth of the recursive aggregation. If set to or more
than the number of input chunks, the aggregation will be performed in
two steps, one ``chunk`` function per input chunk and a single
``aggregate`` function at the end. If set to less than that, an
intermediate ``combine`` function will be used, so that any one
``combine`` or ``aggregate`` function has no more than ``split_every``
inputs. The depth of the aggregation graph will be
:math:`log_{split_every}(input chunks along reduced axes)`. Setting to
a low value can reduce cache size and network transfers, at the cost of
more CPU and a larger dask graph.
Omit to let dask heuristically decide a good default. A default can
also be set globally with the ``split_every`` key in
:mod:`dask.config`.
name: str, optional
Prefix of the keys of the intermediate and output nodes. If omitted it
defaults to the function names.
out: Array, optional
Another dask array whose contents will be replaced. Omit to create a
new one. Note that, unlike in numpy, this setting gives no performance
benefits whatsoever, but can still be useful if one needs to preserve
the references to a previously existing Array.
concatenate: bool, optional
If True (the default), the outputs of the ``chunk``/``combine``
functions are concatenated into a single np.array before being passed
to the ``combine``/``aggregate`` functions. If False, the input of
``combine`` and ``aggregate`` will be either a list of the raw outputs
of the previous step or a single output, and the function will have to
concatenate it itself. It can be useful to set this to False if the
chunk and/or combine steps do not produce np.arrays.
output_size: int >= 1, optional
Size of the output of the ``aggregate`` function along the reduced
axes. Ignored if keepdims is False.
Returns
-------
dask array
**Function Parameters**
x_chunk: numpy.ndarray
Individual input chunk. For ``chunk`` functions, it is one of the
original chunks of x. For ``combine`` and ``aggregate`` functions, it's
the concatenation of the outputs produced by the previous ``chunk`` or
``combine`` functions. If concatenate=False, it's a list of the raw
outputs from the previous functions.
axis: tuple
Normalized list of axes to reduce upon, e.g. ``(0, )``
Scalar, negative, and None axes have been normalized away.
Note that some numpy reduction functions cannot reduce along multiple
axes at once and strictly require an int in input. Such functions have
to be wrapped to cope.
keepdims: bool
Whether the reduction function should preserve the reduced axes or
remove them.
"""
if axis is None:
axis = tuple(range(x.ndim))
if isinstance(axis, Integral):
axis = (axis,)
axis = validate_axis(axis, x.ndim)
if dtype is None:
raise ValueError("Must specify dtype")
if 'dtype' in getargspec(chunk).args:
chunk = partial(chunk, dtype=dtype)
if 'dtype' in getargspec(aggregate).args:
aggregate = partial(aggregate, dtype=dtype)
# Map chunk across all blocks
inds = tuple(range(x.ndim))
# The dtype of `tmp` doesn't actually matter, and may be incorrect.
tmp = blockwise(chunk, inds, x, inds, axis=axis, keepdims=True, dtype=x.dtype)
tmp._chunks = tuple((output_size, ) * len(c) if i in axis else c
for i, c in enumerate(tmp.chunks))
result = _tree_reduce(tmp, aggregate, axis, keepdims, dtype, split_every,
combine, name=name, concatenate=concatenate)
if keepdims and output_size != 1:
result._chunks = tuple((output_size, ) if i in axis else c
for i, c in enumerate(tmp.chunks))
return handle_out(out, result)
def _tree_reduce(x, aggregate, axis, keepdims, dtype, split_every=None,
combine=None, name=None, concatenate=True):
""" Perform the tree reduction step of a reduction.
Lower level, users should use ``reduction`` or ``arg_reduction`` directly.
"""
# Normalize split_every
split_every = split_every or config.get('split_every', 4)
if isinstance(split_every, dict):
split_every = dict((k, split_every.get(k, 2)) for k in axis)
elif isinstance(split_every, Integral):
n = builtins.max(int(split_every ** (1 / (len(axis) or 1))), 2)
split_every = dict.fromkeys(axis, n)
else:
raise ValueError("split_every must be a int or a dict")
# Reduce across intermediates
depth = 1
for i, n in enumerate(x.numblocks):
if i in split_every and split_every[i] != 1:
depth = int(builtins.max(depth, ceil(log(n, split_every[i]))))
func = partial(combine or aggregate, axis=axis, keepdims=True)
if concatenate:
func = compose(func, partial(_concatenate2, axes=axis))
for i in range(depth - 1):
x = partial_reduce(func, x, split_every, True, dtype=dtype,
name=(name or funcname(combine or aggregate)) + '-partial')
func = partial(aggregate, axis=axis, keepdims=keepdims)
if concatenate:
func = compose(func, partial(_concatenate2, axes=axis))
return partial_reduce(func, x, split_every, keepdims=keepdims, dtype=dtype,
name=(name or funcname(aggregate)) + '-aggregate')
def partial_reduce(func, x, split_every, keepdims=False, dtype=None, name=None):
""" Partial reduction across multiple axes.
Parameters
----------
func : function
x : Array
split_every : dict
Maximum reduction block sizes in each dimension.
Examples
--------
Reduce across axis 0 and 2, merging a maximum of 1 block in the 0th
dimension, and 3 blocks in the 2nd dimension:
>>> partial_reduce(np.min, x, {0: 1, 2: 3}) # doctest: +SKIP
"""
name = (name or funcname(func)) + '-' + tokenize(func, x, split_every,
keepdims, dtype)
parts = [list(partition_all(split_every.get(i, 1), range(n))) for (i, n)
in enumerate(x.numblocks)]
keys = product(*map(range, map(len, parts)))
out_chunks = [tuple(1 for p in partition_all(split_every[i], c)) if i
in split_every else c for (i, c) in enumerate(x.chunks)]
if not keepdims:
out_axis = [i for i in range(x.ndim) if i not in split_every]
getter = lambda k: get(out_axis, k)
keys = map(getter, keys)
out_chunks = list(getter(out_chunks))
dsk = {}
for k, p in zip(keys, product(*parts)):
decided = dict((i, j[0]) for (i, j) in enumerate(p) if len(j) == 1)
dummy = dict(i for i in enumerate(p) if i[0] not in decided)
g = lol_tuples((x.name,), range(x.ndim), decided, dummy)
dsk[(name,) + k] = (func, g)
graph = HighLevelGraph.from_collections(name, dsk, dependencies=[x])
return Array(graph, name, out_chunks, dtype=dtype)
@wraps(chunk.sum)
def sum(a, axis=None, dtype=None, keepdims=False, split_every=None, out=None):
if dtype is not None:
dt = dtype
else:
dt = getattr(np.empty((1,), dtype=a.dtype).sum(), 'dtype', object)
result = reduction(a, chunk.sum, chunk.sum, axis=axis, keepdims=keepdims,
dtype=dt, split_every=split_every, out=out)
return result
@wraps(chunk.prod)
def prod(a, axis=None, dtype=None, keepdims=False, split_every=None, out=None):
if dtype is not None:
dt = dtype
else:
dt = getattr(np.empty((1,), dtype=a.dtype).prod(), 'dtype', object)
return reduction(a, chunk.prod, chunk.prod, axis=axis, keepdims=keepdims,
dtype=dt, split_every=split_every, out=out)
@wraps(chunk.min)
def min(a, axis=None, keepdims=False, split_every=None, out=None):
return reduction(a, chunk.min, chunk.min, axis=axis, keepdims=keepdims,
dtype=a.dtype, split_every=split_every, out=out)
@wraps(chunk.max)
def max(a, axis=None, keepdims=False, split_every=None, out=None):
return reduction(a, chunk.max, chunk.max, axis=axis, keepdims=keepdims,
dtype=a.dtype, split_every=split_every, out=out)
@wraps(chunk.any)
def any(a, axis=None, keepdims=False, split_every=None, out=None):
return reduction(a, chunk.any, chunk.any, axis=axis, keepdims=keepdims,
dtype='bool', split_every=split_every, out=out)
@wraps(chunk.all)
def all(a, axis=None, keepdims=False, split_every=None, out=None):
return reduction(a, chunk.all, chunk.all, axis=axis, keepdims=keepdims,
dtype='bool', split_every=split_every, out=out)
@wraps(chunk.nansum)
def nansum(a, axis=None, dtype=None, keepdims=False, split_every=None, out=None):
if dtype is not None:
dt = dtype
else:
dt = getattr(chunk.nansum(np.empty((1,), dtype=a.dtype)), 'dtype', object)
return reduction(a, chunk.nansum, chunk.sum, axis=axis, keepdims=keepdims,
dtype=dt, split_every=split_every, out=out)
with ignoring(AttributeError):
@wraps(chunk.nanprod)
def nanprod(a, axis=None, dtype=None, keepdims=False, split_every=None,
out=None):
if dtype is not None:
dt = dtype
else:
dt = getattr(chunk.nansum(np.empty((1,), dtype=a.dtype)), 'dtype', object)
return reduction(a, chunk.nanprod, chunk.prod, axis=axis,
keepdims=keepdims, dtype=dt, split_every=split_every,
out=out)
@wraps(chunk.nancumsum)
def nancumsum(x, axis, dtype=None, out=None):
return cumreduction(chunk.nancumsum, operator.add, 0, x, axis, dtype,
out=out)
@wraps(chunk.nancumprod)
def nancumprod(x, axis, dtype=None, out=None):
return cumreduction(chunk.nancumprod, operator.mul, 1, x, axis, dtype,
out=out)
@wraps(chunk.nanmin)
def nanmin(a, axis=None, keepdims=False, split_every=None, out=None):
return reduction(a, chunk.nanmin, chunk.nanmin, axis=axis,
keepdims=keepdims, dtype=a.dtype, split_every=split_every,
out=out)
@wraps(chunk.nanmax)
def nanmax(a, axis=None, keepdims=False, split_every=None, out=None):
return reduction(a, chunk.nanmax, chunk.nanmax, axis=axis,
keepdims=keepdims, dtype=a.dtype, split_every=split_every,
out=out)
def numel(x, **kwargs):
""" A reduction to count the number of elements """
return chunk.sum(np.ones_like(x), **kwargs)
def nannumel(x, **kwargs):
""" A reduction to count the number of elements """
return chunk.sum(~np.isnan(x), **kwargs)
def mean_chunk(x, sum=chunk.sum, numel=numel, dtype='f8', **kwargs):
n = numel(x, dtype=dtype, **kwargs)
total = sum(x, dtype=dtype, **kwargs)
return {'n': n, 'total': total}
def mean_combine(pairs, sum=chunk.sum, numel=numel, dtype='f8', axis=None, **kwargs):
if not isinstance(pairs, list):
pairs = [pairs]
ns = deepmap(lambda pair: pair['n'], pairs)
totals = deepmap(lambda pair: pair['total'], pairs)
n = _concatenate2(ns, axes=axis).sum(axis=axis, **kwargs)
total = _concatenate2(totals, axes=axis).sum(axis=axis, **kwargs)
return {'n': n, 'total': total}
def mean_agg(pairs, dtype='f8', axis=None, **kwargs):
ns = deepmap(lambda pair: pair['n'], pairs)
totals = deepmap(lambda pair: pair['total'], pairs)
n = _concatenate2(ns, axes=axis).sum(axis=axis, dtype=dtype, **kwargs)
total = _concatenate2(totals, axes=axis).sum(axis=axis, dtype=dtype, **kwargs)
return divide(total, n, dtype=dtype)
@wraps(chunk.mean)
def mean(a, axis=None, dtype=None, keepdims=False, split_every=None, out=None):
if dtype is not None:
dt = dtype
else:
dt = getattr(np.mean(np.empty(shape=(1,), dtype=a.dtype)), 'dtype', object)
return reduction(a, mean_chunk, mean_agg, axis=axis, keepdims=keepdims,
dtype=dt, split_every=split_every, combine=mean_combine,
out=out, concatenate=False)
def nanmean(a, axis=None, dtype=None, keepdims=False, split_every=None,
out=None):
if dtype is not None:
dt = dtype
else:
dt = getattr(np.mean(np.empty(shape=(1,), dtype=a.dtype)), 'dtype', object)
return reduction(a, partial(mean_chunk, sum=chunk.nansum, numel=nannumel),
mean_agg, axis=axis, keepdims=keepdims, dtype=dt,
split_every=split_every, out=out,
concatenate=False,
combine=partial(mean_combine, sum=chunk.nansum, numel=nannumel))
with ignoring(AttributeError):
nanmean = wraps(chunk.nanmean)(nanmean)
def moment_chunk(A, order=2, sum=chunk.sum, numel=numel, dtype='f8', **kwargs):
total = sum(A, dtype=dtype, **kwargs)
n = numel(A, **kwargs).astype(np.int64)
u = total / n
xs = [sum((A - u)**i, dtype=dtype, **kwargs) for i in range(2, order + 1)]
M = np.stack(xs, axis=-1)
return {'total': total, 'n': n, 'M': M}
def _moment_helper(Ms, ns, inner_term, order, sum, axis, kwargs):
M = Ms[..., order - 2].sum(axis=axis, **kwargs) + sum(ns * inner_term ** order, axis=axis, **kwargs)
for k in range(1, order - 1):
coeff = factorial(order) / (factorial(k) * factorial(order - k))
M += coeff * sum(Ms[..., order - k - 2] * inner_term**k, axis=axis, **kwargs)
return M
def moment_combine(pairs, order=2, ddof=0, dtype='f8', sum=np.sum, axis=None, **kwargs):
if not isinstance(pairs, list):
pairs = [pairs]
totals = _concatenate2(deepmap(lambda pair: pair['total'], pairs), axes=axis)
ns = _concatenate2(deepmap(lambda pair: pair['n'], pairs), axes=axis)
Ms = _concatenate2(deepmap(lambda pair: pair['M'], pairs), axes=axis)
kwargs['dtype'] = dtype
kwargs['keepdims'] = True
total = totals.sum(axis=axis, **kwargs)
n = ns.sum(axis=axis, **kwargs)
mu = divide(total, n, dtype=dtype)
inner_term = divide(totals, ns, dtype=dtype) - mu
xs = [_moment_helper(Ms, ns, inner_term, o, sum, axis, kwargs) for o in range(2, order + 1)]
M = np.stack(xs, axis=-1)
return {'total': total, 'n': n, 'M': M}
def moment_agg(pairs, order=2, ddof=0, dtype='f8', sum=np.sum, axis=None, **kwargs):
if not isinstance(pairs, list):
pairs = [pairs]
totals = _concatenate2(deepmap(lambda pair: pair['total'], pairs), axes=axis)
ns = _concatenate2(deepmap(lambda pair: pair['n'], pairs), axes=axis)
Ms = _concatenate2(deepmap(lambda pair: pair['M'], pairs), axes=axis)
kwargs['dtype'] = dtype
# To properly handle ndarrays, the original dimensions need to be kept for
# part of the calculation.
keepdim_kw = kwargs.copy()
keepdim_kw['keepdims'] = True
n = ns.sum(axis=axis, **keepdim_kw)
mu = divide(totals.sum(axis=axis, **keepdim_kw), n, dtype=dtype)
inner_term = divide(totals, ns, dtype=dtype) - mu
M = _moment_helper(Ms, ns, inner_term, order, sum, axis, kwargs)
return divide(M, n.sum(axis=axis, **kwargs) - ddof, dtype=dtype)
def moment(a, order, axis=None, dtype=None, keepdims=False, ddof=0,
split_every=None, out=None):
if not isinstance(order, Integral) or order < 0:
raise ValueError("Order must be an integer >= 0")
if order < 2:
reduced = a.sum(axis=axis) # get reduced shape and chunks
if order == 0:
# When order equals 0, the result is 1, by definition.
return ones(reduced.shape, chunks=reduced.chunks, dtype='f8')
# By definition the first order about the mean is 0.
return zeros(reduced.shape, chunks=reduced.chunks, dtype='f8')
if dtype is not None:
dt = dtype
else:
dt = getattr(np.var(np.ones(shape=(1,), dtype=a.dtype)), 'dtype', object)
return reduction(a, partial(moment_chunk, order=order),
partial(moment_agg, order=order, ddof=ddof),
axis=axis, keepdims=keepdims,
dtype=dt, split_every=split_every, out=out,
concatenate=False,
combine=partial(moment_combine, order=order))
@wraps(chunk.var)
def var(a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None,
out=None):
if dtype is not None:
dt = dtype
else:
dt = getattr(np.var(np.ones(shape=(1,), dtype=a.dtype)), 'dtype', object)
return reduction(a, moment_chunk, partial(moment_agg, ddof=ddof), axis=axis,
keepdims=keepdims, dtype=dt, split_every=split_every,
combine=moment_combine, name='var', out=out,
concatenate=False)
def nanvar(a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None,
out=None):
if dtype is not None:
dt = dtype
else:
dt = getattr(np.var(np.ones(shape=(1,), dtype=a.dtype)), 'dtype', object)
return reduction(a, partial(moment_chunk, sum=chunk.nansum, numel=nannumel),
partial(moment_agg, sum=np.nansum, ddof=ddof), axis=axis,
keepdims=keepdims, dtype=dt, split_every=split_every,
combine=partial(moment_combine, sum=np.nansum), out=out,
concatenate=False)
with ignoring(AttributeError):
nanvar = wraps(chunk.nanvar)(nanvar)
@wraps(chunk.std)
def std(a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None,
out=None):
result = sqrt(a.var(axis=axis, dtype=dtype, keepdims=keepdims, ddof=ddof,
split_every=split_every, out=out))
if dtype and dtype != result.dtype:
result = result.astype(dtype)
return result
def nanstd(a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None,
out=None):
result = sqrt(nanvar(a, axis=axis, dtype=dtype, keepdims=keepdims,
ddof=ddof, split_every=split_every, out=out))
if dtype and dtype != result.dtype:
result = result.astype(dtype)
return result
with ignoring(AttributeError):
nanstd = wraps(chunk.nanstd)(nanstd)
def _arg_combine(data, axis, argfunc, keepdims=False):
""" Merge intermediate results from ``arg_*`` functions"""
axis = None if len(axis) == data.ndim or data.ndim == 1 else axis[0]
vals = data['vals']
arg = data['arg']
if axis is None:
local_args = argfunc(vals, axis=axis, keepdims=keepdims)
vals = vals.ravel()[local_args]
arg = arg.ravel()[local_args]
else:
local_args = argfunc(vals, axis=axis)
inds = np.ogrid[tuple(map(slice, local_args.shape))]
inds.insert(axis, local_args)
inds = tuple(inds)
vals = vals[inds]
arg = arg[inds]
if keepdims:
vals = np.expand_dims(vals, axis)
arg = np.expand_dims(arg, axis)
return arg, vals
def arg_chunk(func, argfunc, x, axis, offset_info):
arg_axis = None if len(axis) == x.ndim or x.ndim == 1 else axis[0]
vals = func(x, axis=arg_axis, keepdims=True)
arg = argfunc(x, axis=arg_axis, keepdims=True)
if arg_axis is None:
offset, total_shape = offset_info
ind = np.unravel_index(arg.ravel()[0], x.shape)
total_ind = tuple(o + i for (o, i) in zip(offset, ind))
arg[:] = np.ravel_multi_index(total_ind, total_shape)
else:
arg += offset_info
if isinstance(vals, np.ma.masked_array):
if 'min' in argfunc.__name__:
fill_value = np.ma.minimum_fill_value(vals)
else:
fill_value = np.ma.maximum_fill_value(vals)
vals = np.ma.filled(vals, fill_value)
result = np.empty(shape=vals.shape, dtype=[('vals', vals.dtype),
('arg', arg.dtype)])
result['vals'] = vals
result['arg'] = arg
return result
def arg_combine(func, argfunc, data, axis=None, **kwargs):
arg, vals = _arg_combine(data, axis, argfunc, keepdims=True)
result = np.empty(shape=vals.shape, dtype=[('vals', vals.dtype),
('arg', arg.dtype)])
result['vals'] = vals
result['arg'] = arg
return result
def arg_agg(func, argfunc, data, axis=None, **kwargs):
return _arg_combine(data, axis, argfunc, keepdims=False)[0]
def nanarg_agg(func, argfunc, data, axis=None, **kwargs):
arg, vals = _arg_combine(data, axis, argfunc, keepdims=False)
if np.any(np.isnan(vals)):
raise ValueError("All NaN slice encountered")
return arg
def arg_reduction(x, chunk, combine, agg, axis=None, split_every=None, out=None):
""" Generic function for argreduction.
Parameters
----------
x : Array
chunk : callable
Partialed ``arg_chunk``.
combine : callable
Partialed ``arg_combine``.
agg : callable
Partialed ``arg_agg``.
axis : int, optional
split_every : int or dict, optional
"""
if axis is None:
axis = tuple(range(x.ndim))
ravel = True
elif isinstance(axis, Integral):
axis = validate_axis(axis, x.ndim)
axis = (axis,)
ravel = x.ndim == 1
else:
raise TypeError("axis must be either `None` or int, "
"got '{0}'".format(axis))
for ax in axis:
chunks = x.chunks[ax]
if len(chunks) > 1 and np.isnan(chunks).any():
raise ValueError(
"Arg-reductions do not work with arrays that have "
"unknown chunksizes. At some point in your computation "
"this array lost chunking information"
)
# Map chunk across all blocks
name = 'arg-reduce-{0}'.format(tokenize(axis, x, chunk,
combine, split_every))
old = x.name
keys = list(product(*map(range, x.numblocks)))
offsets = list(product(*(accumulate(operator.add, bd[:-1], 0)
for bd in x.chunks)))
if ravel:
offset_info = zip(offsets, repeat(x.shape))
else:
offset_info = pluck(axis[0], offsets)
chunks = tuple((1, ) * len(c) if i in axis else c for (i, c)
in enumerate(x.chunks))
dsk = dict(((name,) + k, (chunk, (old,) + k, axis, off)) for (k, off)
in zip(keys, offset_info))
# The dtype of `tmp` doesn't actually matter, just need to provide something
graph = HighLevelGraph.from_collections(name, dsk, dependencies=[x])
tmp = Array(graph, name, chunks, dtype=x.dtype)
dtype = np.argmin([1]).dtype
result = _tree_reduce(tmp, agg, axis, False, dtype, split_every, combine)
return handle_out(out, result)
def make_arg_reduction(func, argfunc, is_nan_func=False):
""" Create an argreduction callable
Parameters
----------
func : callable
The reduction (e.g. ``min``)
argfunc : callable
The argreduction (e.g. ``argmin``)
"""
chunk = partial(arg_chunk, func, argfunc)
combine = partial(arg_combine, func, argfunc)
if is_nan_func:
agg = partial(nanarg_agg, func, argfunc)
else:
agg = partial(arg_agg, func, argfunc)
@wraps(argfunc)
def _(x, axis=None, split_every=None, out=None):
return arg_reduction(x, chunk, combine, agg, axis,
split_every=split_every, out=out)
return _
def _nanargmin(x, axis, **kwargs):
try:
return chunk.nanargmin(x, axis, **kwargs)
except ValueError:
return chunk.nanargmin(np.where(np.isnan(x), np.inf, x), axis, **kwargs)
def _nanargmax(x, axis, **kwargs):
try:
return chunk.nanargmax(x, axis, **kwargs)
except ValueError:
return chunk.nanargmax(np.where(np.isnan(x), -np.inf, x), axis, **kwargs)
argmin = make_arg_reduction(chunk.min, chunk.argmin)
argmax = make_arg_reduction(chunk.max, chunk.argmax)
nanargmin = make_arg_reduction(chunk.nanmin, _nanargmin, True)
nanargmax = make_arg_reduction(chunk.nanmax, _nanargmax, True)
def cumreduction(func, binop, ident, x, axis=None, dtype=None, out=None):
""" Generic function for cumulative reduction
Parameters
----------
func: callable
Cumulative function like np.cumsum or np.cumprod
binop: callable
Associated binary operator like ``np.cumsum->add`` or ``np.cumprod->mul``
ident: Number
Associated identity like ``np.cumsum->0`` or ``np.cumprod->1``
x: dask Array
axis: int
dtype: dtype
Returns
-------
dask array
See also
--------
cumsum
cumprod
"""
if axis is None:
x = x.flatten()
axis = 0
if dtype is None:
dtype = getattr(func(np.empty((0,), dtype=x.dtype)), 'dtype', object)
assert isinstance(axis, Integral)
axis = validate_axis(axis, x.ndim)
m = x.map_blocks(func, axis=axis, dtype=dtype)
name = '{0}-{1}'.format(func.__name__, tokenize(func, axis, binop,
ident, x, dtype))
n = x.numblocks[axis]
full = slice(None, None, None)
slc = (full,) * axis + (slice(-1, None),) + (full,) * (x.ndim - axis - 1)
indices = list(product(*[range(nb) if i != axis else [0]
for i, nb in enumerate(x.numblocks)]))
dsk = dict()
for ind in indices:
shape = tuple(x.chunks[i][ii] if i != axis else 1
for i, ii in enumerate(ind))
dsk[(name, 'extra') + ind] = (np.full, shape, ident, m.dtype)
dsk[(name,) + ind] = (m.name,) + ind
for i in range(1, n):
last_indices = indices
indices = list(product(*[range(nb) if ii != axis else [i]
for ii, nb in enumerate(x.numblocks)]))
for old, ind in zip(last_indices, indices):
this_slice = (name, 'extra') + ind
dsk[this_slice] = (binop, (name, 'extra') + old,
(operator.getitem, (m.name,) + old, slc))
dsk[(name,) + ind] = (binop, this_slice, (m.name,) + ind)
graph = HighLevelGraph.from_collections(name, dsk, dependencies=[m])
result = Array(graph, name, x.chunks, m.dtype)
return handle_out(out, result)
def _cumsum_merge(a, b):
if isinstance(a, np.ma.masked_array) or isinstance(b, np.ma.masked_array):
values = np.ma.getdata(a) + np.ma.getdata(b)
return np.ma.masked_array(values, mask=np.ma.getmaskarray(b))
return a + b
def _cumprod_merge(a, b):
if isinstance(a, np.ma.masked_array) or isinstance(b, np.ma.masked_array):
values = np.ma.getdata(a) * np.ma.getdata(b)
return np.ma.masked_array(values, mask=np.ma.getmaskarray(b))
return a * b
@wraps(np.cumsum)
def cumsum(x, axis=None, dtype=None, out=None):
return cumreduction(np.cumsum, _cumsum_merge, 0, x, axis, dtype, out=out)
@wraps(np.cumprod)
def cumprod(x, axis=None, dtype=None, out=None):
return cumreduction(np.cumprod, _cumprod_merge, 1, x, axis, dtype, out=out)
def topk(a, k, axis=-1, split_every=None):
""" Extract the k largest elements from a on the given axis,
and return them sorted from largest to smallest.
If k is negative, extract the -k smallest elements instead,
and return them sorted from smallest to largest.
This performs best when ``k`` is much smaller than the chunk size. All
results will be returned in a single chunk along the given axis.
Parameters
----------
x: Array
Data being sorted
k: int
axis: int, optional
split_every: int >=2, optional
See :func:`reduce`. This parameter becomes very important when k is
on the same order of magnitude of the chunk size or more, as it
prevents getting the whole or a significant portion of the input array
in memory all at once, with a negative impact on network transfer
too when running on distributed.
Returns
-------
Selection of x with size abs(k) along the given axis.
Examples
--------
>>> import dask.array as da
>>> x = np.array([5, 1, 3, 6])
>>> d = da.from_array(x, chunks=2)
>>> d.topk(2).compute()
array([6, 5])
>>> d.topk(-2).compute()
array([1, 3])
"""
axis = validate_axis(axis, a.ndim)
# chunk and combine steps of the reduction, which recursively invoke
# np.partition to pick the top/bottom k elements from the previous step.
# The selection is not sorted internally.
chunk_combine = partial(chunk.topk, k=k)
# aggregate step of the reduction. Internally invokes the chunk/combine
# function, then sorts the results internally.
aggregate = partial(chunk.topk_aggregate, k=k)
return reduction(
a, chunk=chunk_combine, combine=chunk_combine, aggregate=aggregate,
axis=axis, keepdims=True, dtype=a.dtype, split_every=split_every,
output_size=abs(k))
def argtopk(a, k, axis=-1, split_every=None):
""" Extract the indices of the k largest elements from a on the given axis,
and return them sorted from largest to smallest. If k is negative, extract
the indices of the -k smallest elements instead, and return them sorted
from smallest to largest.
This performs best when ``k`` is much smaller than the chunk size. All
results will be returned in a single chunk along the given axis.
Parameters
----------
x: Array
Data being sorted
k: int
axis: int, optional
split_every: int >=2, optional
See :func:`topk`. The performance considerations for topk also apply
here.
Returns
-------
Selection of np.intp indices of x with size abs(k) along the given axis.
Examples
--------
>>> import dask.array as da
>>> x = np.array([5, 1, 3, 6])
>>> d = da.from_array(x, chunks=2)
>>> d.argtopk(2).compute()
array([3, 0])
>>> d.argtopk(-2).compute()
array([1, 2])
"""
axis = validate_axis(axis, a.ndim)
# Generate nodes where every chunk is a tuple of (a, original index of a)
idx = arange(a.shape[axis], chunks=(a.chunks[axis], ), dtype=np.intp)
idx = idx[tuple(slice(None) if i == axis else np.newaxis
for i in range(a.ndim))]
a_plus_idx = a.map_blocks(chunk.argtopk_preprocess, idx,
dtype=object)
# chunk and combine steps of the reduction. They acquire in input a tuple
# of (a, original indices of a) and return another tuple containing the top
# k elements of a and the matching original indices. The selection is not
# sorted internally, as in np.argpartition.
chunk_combine = partial(chunk.argtopk, k=k)
# aggregate step of the reduction. Internally invokes the chunk/combine
# function, then sorts the results internally, drops a and returns the
# index only.
aggregate = partial(chunk.argtopk_aggregate, k=k)
return reduction(
a_plus_idx, chunk=chunk_combine, combine=chunk_combine,
aggregate=aggregate, axis=axis, keepdims=True, dtype=np.intp,
split_every=split_every, concatenate=False, output_size=abs(k))