You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ORPA-pyOpenRPA/Resources/WPy64-3720/python-3.7.2.amd64/Lib/site-packages/jedi/cache.py

147 lines
4.2 KiB

"""
This caching is very important for speed and memory optimizations. There's
nothing really spectacular, just some decorators. The following cache types are
available:
- ``time_cache`` can be used to cache something for just a limited time span,
which can be useful if there's user interaction and the user cannot react
faster than a certain time.
This module is one of the reasons why |jedi| is not thread-safe. As you can see
there are global variables, which are holding the cache information. Some of
these variables are being cleaned after every API usage.
"""
import time
from functools import wraps
from jedi import settings
from parso.cache import parser_cache
_time_caches = {}
def underscore_memoization(func):
"""
Decorator for methods::
class A(object):
def x(self):
if self._x:
self._x = 10
return self._x
Becomes::
class A(object):
@underscore_memoization
def x(self):
return 10
A now has an attribute ``_x`` written by this decorator.
"""
name = '_' + func.__name__
def wrapper(self):
try:
return getattr(self, name)
except AttributeError:
result = func(self)
setattr(self, name, result)
return result
return wrapper
def clear_time_caches(delete_all=False):
""" Jedi caches many things, that should be completed after each completion
finishes.
:param delete_all: Deletes also the cache that is normally not deleted,
like parser cache, which is important for faster parsing.
"""
global _time_caches
if delete_all:
for cache in _time_caches.values():
cache.clear()
parser_cache.clear()
else:
# normally just kill the expired entries, not all
for tc in _time_caches.values():
# check time_cache for expired entries
for key, (t, value) in list(tc.items()):
if t < time.time():
# delete expired entries
del tc[key]
def call_signature_time_cache(time_add_setting):
"""
This decorator works as follows: Call it with a setting and after that
use the function with a callable that returns the key.
But: This function is only called if the key is not available. After a
certain amount of time (`time_add_setting`) the cache is invalid.
If the given key is None, the function will not be cached.
"""
def _temp(key_func):
dct = {}
_time_caches[time_add_setting] = dct
def wrapper(*args, **kwargs):
generator = key_func(*args, **kwargs)
key = next(generator)
try:
expiry, value = dct[key]
if expiry > time.time():
return value
except KeyError:
pass
value = next(generator)
time_add = getattr(settings, time_add_setting)
if key is not None:
dct[key] = time.time() + time_add, value
return value
return wrapper
return _temp
def time_cache(seconds):
def decorator(func):
cache = {}
@wraps(func)
def wrapper(*args, **kwargs):
key = (args, frozenset(kwargs.items()))
try:
created, result = cache[key]
if time.time() < created + seconds:
return result
except KeyError:
pass
result = func(*args, **kwargs)
cache[key] = time.time(), result
return result
wrapper.clear_cache = lambda: cache.clear()
return wrapper
return decorator
def memoize_method(method):
"""A normal memoize function."""
@wraps(method)
def wrapper(self, *args, **kwargs):
cache_dict = self.__dict__.setdefault('_memoize_method_dct', {})
dct = cache_dict.setdefault(method, {})
key = (args, frozenset(kwargs.items()))
try:
return dct[key]
except KeyError:
result = method(self, *args, **kwargs)
dct[key] = result
return result
return wrapper